(Press-News.org) Scientists have developed a new understanding of how turbulence works, which could help to optimise vehicle performance and save billions in global energy costs.
Dr Ati Sharma, a senior lecturer in aerodynamics and flight mechanics at the University of Southampton, has been working in collaboration with Beverley McKeon, professor of aeronautics and associate director of the Graduate Aerospace Laboratories at the California Institute of Technology (Caltech) to build models of turbulent flow.
Recently, they developed a new and improved way of predicting the composition of turbulence near walls, which could lead to significant fuel savings, as a large amount of energy is consumed by ships and planes, for example, to counteract turbulence-induced drag. Finding a way to reduce the drag by 30 per cent could save the global economy billions of dollars in fuel costs and associated emissions annually.
Wall turbulence develops when fluids—liquid or gas—flow past solid surfaces at anything but the slowest flow rates. Progress in understanding and controlling wall turbulence has been somewhat incremental because of the massive range of scales of motion involved—from the width of a human hair to the height of a multi-floor building in relative terms.
Dr Sharma says: "The interesting puzzle has always been how to predict the seemingly chaotic motion of a turbulent fluid. Although very complicated, scientists have always observed recurring patterns in turbulence. The great red spot on Jupiter would be one well-known example. Somehow these motions must be encouraged more than others, so we started by asking the question, 'what motions of the fluid does the flow amplify the most?'
"It turns out that this question is quite easy to pose — and solve — mathematically, and answering this question provides what are essentially these recurring patterns."
Sharma and McKeon's latest work, however, now provides a way of analysing a large-scale flow by breaking it down into smaller, simpler subequations, or 'blocks' that can be simply added together to introduce more complexity and eventually get back to the full equations.
The researchers have shown that commonly observed features of wall turbulence can be predicted by adding together the results from analysis of a very small number of blocks, even as few as three. With very few blocks, things look a lot like the results of an extremely expensive, real-flow simulation or a full laboratory experiment, but the mathematics are simple enough to be performed on a laptop computer.
"We now have a low-cost way of looking at the 'skeleton' of wall turbulence," says Professor McKeon, explaining that similar previous experiments required the use of a supercomputer. "It was surprising to find that turbulence condenses to these essential building blocks so easily."
This new research helps to reduce the complexity of what the engineers are trying to understand, giving them a template that can be used to try to visually—and mathematically—identify order from flows that may appear to be chaotic. Scientists had proposed the existence of some of the patterns based on observations of real flows; using the new technique, these patterns now can be derived mathematically from the governing equations, allowing researchers to verify previous models of how turbulence works and improve upon those ideas.
Understanding how the formulation can capture the skeleton of turbulence will allow the researchers to modify turbulence in order to control flow and, for example, reduce drag or noise.
"Imagine being able to shape not just an aircraft wing but the characteristics of the turbulence in the flow over it to optimise aircraft performance," says Professor McKeon. "It opens the doors for entirely new capabilities in vehicle performance that may reduce the consumption of even renewable or non-fossil fuels."
###
Funding for the research, which is published online in the Journal of Fluid Mechanics, was partly provided by the Air Force Office of Scientific Research.
Engineers gain new insight into turbulence that could lead to significant global energy savings
2013-08-07
ELSE PRESS RELEASES FROM THIS DATE:
Quasar observed in 6 separate light reflections
2013-08-07
Quasars are active black holes -- primarily from the early universe. Using a special method where you observe light that has been bent by gravity on its way through the universe, a group of physics students from the Niels Bohr Institute have observed a quasar whose light has been deflected and reflected in six separate images. This is the first time a quasar has been observed with so many light reflections. The results are published in the scientific journal, Astrophysical Journal.
INFORMATION:
Article in Astrophysical Journal: http://stacks.iop.org/0004-637X/773/146
For ...
Self-healing solar cells 'channel' natural processes
2013-08-07
To understand how solar cells heal themselves, look no further than the nearest tree leaf or the back of your hand.
The "branching" vascular channels that circulate life-sustaining nutrients throughout leaves and hands serve as the inspiration for solar cells that can restore themselves efficiently and inexpensively.
In a new paper, North Carolina State University researchers Orlin Velev and Hyung-Jun Koo show that creating solar cell devices with channels that mimic organic vascular systems can effectively reinvigorate solar cells whose performance ...
New insights into the 1-in-a-million lightning called 'ball lightning'
2013-08-07
One of the rare scientific reports on the rarest form of lightning -- ball lightning -- describes better ways of producing this mysterious phenomenon under the modern laboratory conditions needed to explain it. The new study on a phenomenon that puzzled and perplexed the likes of Aristotle 2,300 years ago and Nikola Tesla a century ago appears in ACS' The Journal of Physical Chemistry A.
C. Michael Lindsay and colleagues explain that ball lightning consists of a floating, glowing ball that may drift eerily through the sky and then explode violently, sometimes injuring ...
A greener, more sustainable source of ingredients for widely used plastics
2013-08-07
A new process can convert a wide variety of vegetable and animal fats and oils -- ranging from lard to waste cooking oil -- into a key ingredient for making plastics that currently comes from petroleum, scientists say. Their report on the first-of-its-kind process appears in the journal ACS Sustainable Chemistry & Engineering.
Douglas Neckers and Maria Muro-Small explain that many of the plastics found in hundreds of everyday products begin with a group of chemical raw materials termed olefins that come from petroleum. They include ethylene, propylene and butadiene, ...
Gold 'nanoprobes' hold the key to treating killer diseases
2013-08-07
Researchers at the University of Southampton, in collaboration with colleagues at the University of Cambridge, have developed a technique to help treat fatal diseases more effectively. Dr Sumeet Mahajan and his group at the Institute for Life Sciences at Southampton are using gold nanoprobes to identify different types of cells, so that they can use the right ones in stem cell therapies.
Stem cell therapy is in its infancy, but has the potential to change the way we treat cancer and other life-threatening diseases, by replacing damaged or diseased cells with healthy ones. ...
New high-tech laser method allows DNA to be inserted 'gently' into living cells
2013-08-07
WASHINGTON, Aug. 7—The applications of gene therapy and genetic engineering are broad: everything from pet fish that glow red to increased crop yields worldwide to cures for many of the diseases that plague humankind. But realizing them always starts with solving the same basic scientific question—how to "transfect" a cell by inserting foreign DNA into it. Many methods already exist for doing this, but they tend to be clumsy and destructive, not allowing researchers to precisely control how and when they insert the DNA or requiring them to burn through large numbers of ...
Loss of MicroRNA decoy might contribute to development of soft-tissue sarcoma
2013-08-07
COLUMBUS, Ohio – Researchers have discovered a novel mechanism responsible for the loss of a critical tumor-suppressor gene in rhabdomyosarcoma and other soft-tissue sarcomas, rare cancers that strike mainly children and often respond poorly to treatment. Their cause is largely unknown.
Knowledge of the mechanism could guide the development of more effective therapies for these malignancies, say researchers who led the study at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).
The ...
Is sous vide cooking safe?
2013-08-07
The Institute of Food Research (IFR) has been undertaking research for the Food Standards Agency to establish if the cooking technique sous vide is safe. Sous vide uses lower temperatures to improve food quality and could be a step closer to being more widely adopted after Institute of Food Research scientists assessed the steps needed to ensure the process is safe.
Sous vide cooking involves vacuum packing food in a plastic pouch and then heating in a water bath. Chefs are attracted to the precise nature of the temperature control, allowing innovative use of the technology ...
NOAA report highlights climate change threats to nation's estuaries
2013-08-07
The nation's 28 National Estuarine Research Reserves (NERR) are experiencing the negative effects of human and climate-related stressors according to a new NOAA research report from the National Ocean Service.
The national study, Climate Sensitivity of the National Estuarine Research Reserve System, points to three East Coast reserves, Sapelo Island NERR in Georgia, ACE Basin NERR in South Carolina and Waquoit Bay NERR in Massachusetts, and the Tijuana River NERR on the California-Mexico border, as the most sensitive to climate change.
"The National Estuarine Research ...
What's the matter? Q-glasses could be a new class of solids
2013-08-07
There may be more kinds of stuff than we thought. A team of researchers has reported possible evidence for a new category of solids, things that are neither pure glasses, crystals, nor even exotic quasicrystals. Something else.*
"Very weird. Strangest material I ever saw," says materials physicist Lyle Levine of the National Institute of Standards and Technology (NIST).
The research team from NIST, Argonne National Laboratory, France's Centre d'Élaboration de Matériaux et d'Études Structurales (CNRS) and the University of Washington have analyzed a solid alloy that ...