PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A powerful strategy for developing microbial cell factories by employing synthetic small RNAs

2013-08-08
(Press-News.org) The current systems for the production of chemicals, fuels and materials heavily rely on the use of fossil resources. Due to the increasing concerns on climate change and other environmental problems, however, there has been much interest in developing biorefineries for the production of such chemicals, fuels and materials from renewable resources. For the biorefineries to be competitive with the traditional fossil resource-based refineries, development of high performance microorganisms is the most important as it will affect the overall economics of the process most significantly. Metabolic engineering, which can be defined as purposeful modification of cellular metabolic and regulatory networks with an aim to improve the production of a desired product, has been successfully employed to improve the performance of the cell. However, it is not trivial to engineer the cellular metabolism and regulatory circuits in the cell due to their high complexity.

In metabolic engineering, it is important to find the genes that need to be amplified and attenuated in order to increase the product formation rate while minimizing the production of undesirable byproducts. Gene knock-out experiments are often performed to delete those metabolic fluxes that will consequently result in the increase of the desired product formation. However, gene knock-out experiments require much effort and time to perform, and are difficult to do for a large number of genes. Furthermore, the gene knock-out experiments performed in one strain cannot be transferred to another organism and thus the whole experimental process has to be repeated. This is a big problem in developing a high performance microbial cell factory because it is required to find the best platform strain among many different strains. Therefore, researchers have been eager to develop a strategy that allows rapid identification of multiple genes to be attenuated in multiple strains at the same time.

A Korean research team led by Distinguished Professor Sang Yup Lee at the Department of Chemical and Biomolecular Engineering from the Korea Advanced Institute of Science and Technology (KAIST), a prestigious science and engineering university in Korea, reported the development of a strategy for efficiently developing microbial cell factories by employing synthetic small RNAs (sRNAs). They first reported the development of such system in Nature Biotechnology last February. This strategy of employing synthetic sRNAs in metabolic engineering has been receiving great interest worldwide as it allows easy, rapid, high-throughput, tunable, and un-doable knock-down of multiple genes in multiple strains at the same time. Now, a paper published online on August 8 as a journal cover paper (September issue) in Nature Protocols, describes the detailed strategy and protocol for employing synthetic sRNAs for metabolic engineering.

In this paper, his team describes the detailed step-by-step protocol for synthetic sRNA-based gene expression control, including the sRNA design principles. Tailor-made synthetic sRNAs can be easily manipulated by using conventional gene cloning method. The use of synthetic sRNAs for gene expression regulation provides several advantages such as portability, conditionality, and tunability in high-throughput experiments. Plasmid-based synthetic sRNA expression system does not leave any scar on the chromosome, and can be easily transferred to many other host strains to be examined. Thus, the construction of libraries and examination of different host strains are much easier than the conventional hard-coded gene manipulation systems. Also, the expression of genes can be conditionally repressed by controlling the production of synthetic sRNAs. Synthetic sRNAs possessing different repression efficiencies make it possible to finely tune the gene expression levels as well. Furthermore, synthetic sRNAs allow knock-down of the expression of essential genes, which was not possible by conventional gene knock-out experiments.

Synthetic sRNAs can be utilized for diverse experiments where gene expression regulation is needed. One of promising applications is high-throughput screening of the target genes to be manipulated and multiple strains simultaneously to enhance the production of chemicals and materials of interest. Such simultaneous optimization of gene targets and strains has been one of the big challenges in metabolic engineering. Another application is to fine tune the expression of the screened genes for flux optimization, which would enhance chemical production further by balancing the flux between biomass formation and target chemical production. Synthetic sRNAs can also be applied to finely regulating genetic interactions in a circuit or network, which is essential in synthetic biology. Once a sRNA scaffold-harboring plasmid is constructed, tailor-made, synthetic sRNAs can be made within 3-4 days, followed by the desired application experiments.

Dr. Eytan Zlotorynski, an editor at Nature Protocols, said "This paper describes the detailed protocol for the design and applications of synthetic sRNA. The method, which has many advantages, is likely to become common practice, and prove useful for metabolic engineering and synthetic biology studies."

### This paper published in Nature Protocols will be useful for all researchers in academia and industry who are interested in the use of synthetic sRNAs for fundamental and applied biological and biotechnological studies.

This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (NRF-2012-C1AAA001-2012M1A2A2026556) and the Intelligent Synthetic Biology Center through the Global Frontier Project (2011-0031963) of the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea.

Further Contacts: Dr. Sang Yup Lee, Distinguished Professor
KAIST, Daejeon, Korea
(leesy@kaist.ac.kr, +82-42-350-3930)


ELSE PRESS RELEASES FROM THIS DATE:

Scientists devise innovative method to profile and predict the behavior of proteins

2013-08-08
SAN FRANCISCO, CA and COLLEGE STATION, TX—August 8, 2013—An enzyme is a tiny, well-oiled machine. A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell. However, precisely how these components work together to complete these tasks has long eluded scientists. But now, a team of researchers has found a way to map an enzyme's underlying molecular machinery, revealing patterns that could allow them to predict how an enzyme behaves—and what happens when this process disrupted. In the latest ...

Kids born small should get moving

2013-08-08
HOUSTON – (Aug. 8, 2013) – Female mice who were growth restricted in the womb were born at a lower birth weight, but were less active and prone to obesity as adults, said researchers from Baylor College of Medicine and the USDA/ARS Children's Nutrition Research Center (CNRC) at BCM and Texas Children's Hospital in a report that appears online in the International Journal of Obesity. "Given that human studies also show female-specific obesity following early growth restriction," said Dr. Robert Waterland, associate professor of pediatrics – nutrition at BCM, and a member ...

Scientific breakthrough reveals how vitamin B12 is made

2013-08-08
Vitamin B12 is pieced together as an elaborate molecular jigsaw involving around 30 individual components. It is unique amongst the vitamins in that it is only made by certain bacteria. In the early 1990's it was realised that there were two pathways to allow its construction – one that requires oxygen and one that occurs in the absence of oxygen. It is this so-called anaerobic pathway, which is the more common pathway, that proved so elusive as the components of the pathway are very unstable and rapidly degrade. However, as explained in a paper published by PNAS (Proceedings ...

New forensic technique for analyzing lipstick traces

2013-08-08
Using a technique called Raman spectroscopy, which detects laser light, forensic investigators will be able to analyse lipstick marks left at a crime scene, such as on glasses, a tissue, or cigarette butts, without compromising the continuity of evidence as the sample will remain isolated. Analysis of lipstick traces from crime scenes can be used to establish physical contact between two individuals, such as a victim and a suspect, or to place an individual at a crime scene. The new technique is particularly significant for forensic science as current analysis of lipstick ...

Cesareans weaken gut microbiota and increase risk of allergies

2013-08-08
Children who came into the world by Caesarean section are more often affected by allergies than those born in the natural way. The reason for this may be that they have a less diverse gut microbiota, according to a study by universities in Sweden and Scotland. The researchers have followed gut macrobiota development in 24 children up to the age of two in the Swedish provinces of Östergötland and Småland, nine delivered through Caesarean and 15 delivered naturally, through vaginal birth. They used a type of molecular biology analysis, which gives a broad overview of the ...

Chemists' work will aid drug design to target cancer and inflammatory disease

2013-08-08
BLOOMINGTON, Ind. -- Chemists at Indiana University Bloomington have produced detailed descriptions of the structure and molecular properties of human folate receptor proteins, a key development for designing new drugs that can target cancer and inflammatory diseases without serious side effects. The researchers, from the lab of Charles Dann III, assistant professor of chemistry in the College of Arts and Sciences, published their findings in the Proceedings of the National Academy of Sciences. Dann said the results should help chemists create more effective antifolate ...

Carnegie Mellon research shows cellphone use may not cause more car crashes

2013-08-08
PITTSBURGH—For almost 20 years, it has been a wide-held belief that talking on a cellphone while driving is dangerous and leads to more accidents. However, new research from Carnegie Mellon University and the London School of Economics and Political Science suggests that talking on a cellphone while driving does not increase crash risk. Published in the American Economic Journal: Economic Policy, the study uses data from a major cellphone provider and accident reports to contradict previous findings that connected cellphone use to increased crash risk. Such findings ...

Terahertz technology fights fashion fraud

2013-08-08
The UK fashion industry is famous all over the world and worth around £37 billion to the economy. However, it is estimated that counterfeit clothing and footwear costs designer brands and retailers around £3.5 billion each year. Recently, new powers were given to customs officers to seize and destroy fake goods but in order to act on these powers they need to be able to tell whether or not a particular item of clothing is the genuine article. Scientists from the National Physical Laboratory (NPL) have published research in Applied Optics that demonstrates how a technique ...

TUM researchers investigate 59 tumor cell lines

2013-08-08
In what is the biggest study of its kind to date, researchers from Technische Universität München (TUM) have identified over 10,000 different proteins in cancer cells. "Nearly all anti-tumor drugs are targeted against cellular proteins," says Prof. Bernhard Küster, Head of the TUM Chair of Proteomics and Bioanalytics. "Identifying the proteome the protein portfolio of tumor cells increases our chances of finding new targets for drugs." The scientists investigated 59 tumor cell lines from the US National Cancer Institute. The "NCI-60" cell lines represent the most common ...

Fast detector for a wide wavelength range

2013-08-08
Free-electron lasers are extremely versatile research tools because their intense, super short light flashes permit a closer look at new materials and even biological molecules; thus, allowing effects to be observed that had not been known previously. For pulsed lasers in the far infrared range, the so-called terahertz range, scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have developed a robust and fast detector which can measure the arrival of a terahertz pulse with great accuracy. The results were published in the scientific journal Applied Physics Letters ...

LAST 30 PRESS RELEASES:

Oldest modern shark mega-predator swam off Australia during the age of dinosaurs

Scientists unveil mechanism behind greener ammonia production

Sharper, straighter, stiffer, stronger: Male green hermit hummingbirds have bills evolved for fighting

Nationwide awards honor local students and school leaders championing heart, brain health

Epigenetic changes regulate gene expression, but what regulates epigenetics?

Nasal drops fight brain tumors noninvasively

Okayama University of Science Ranked in the “THE World University Rankings 2026” for the Second Consecutive Year

New study looks at (rainforest) tea leaves to predict fate of tropical forests

When trade routes shift, so do clouds: Florida State University researchers uncover ripple effects of new global shipping regulations

Kennesaw State assistant professor receives grant to improve shelf life of peptide- and protein-based drugs

Current heart attack screening tools are not optimal and fail to identify half the people who are at risk

LJI scientists discover how T cells transform to defend our organs

Brain circuit controlling compulsive behavior mapped

Atoms passing through walls: Quantum tunneling of hydrogen within palladium crystal

Observing quantum footballs blown up by laser kicks

Immune cells ‘caught in the act’ could spur earlier detection and prevention of Type 1 Diabetes

New membrane sets record for separating hydrogen from CO2

Recharging the powerhouse of the cell

University of Minnesota research finds reducing inflammation may protect against early AMD-like vision loss

A mulching film that protects plants without pesticides or plastics

New study highlights key findings on lung cancer surveillance rates

Uniform reference system for lightweight construction methods

Improve diet and increase physical activity at the same time to limit weight gain, study suggests

A surprising insight may put a charge into faster muscle injury repair

Scientists uncover how COVID-19 variants outsmart the immune system

Some children’s tantrums can be seen in the brain, new study finds

Development of 1-Wh-class stacked lithium-air cells

UVA, military researchers seek better ways to identify, treat blast-related brain injuries

AMS Science Preview: Railways and cyclones; pinned clouds; weather warnings in wartime

Scientists identify a molecular switch to a painful side effect of chemotherapy

[Press-News.org] A powerful strategy for developing microbial cell factories by employing synthetic small RNAs