PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Deep Earth heat surprise

2013-08-09
(Press-News.org) Washington, D.C—The key to understanding Earth's evolution is to look at how heat is conducted in the deep lower mantle—a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface. Researchers at the Carnegie Institution, with colleagues at the University of Illinois, have for the first time been able to experimentally simulate the pressure conditions in this region to measure thermal conductivity using a new measurement technique developed by the collaborators and implemented by the Carnegie team on the mantle material magnesium oxide (MgO). They found that heat transfer is lower than other predictions, with total heat flow across the Earth of about 10.4 terawatts, which is about 60 % of the power used today by civilization. They also found that conductivity has less dependence on pressure conditions than predicted. The research is published in the August 9, online Scientific Reports.

Lead author of the study Douglas Dalton explains: "The lower mantle sits on top of the core where pressures range from 230,000 to 1.3 million times the pressure at sea level. Temperatures are like an inferno—from about 2,800°F to 6,700 °F. The major constituents are oxides of magnesium, silicon and calcium. Heat transfer occurs at a higher rate across materials of high thermal conductivity than across materials of low thermal conductivity, thus these low thermal conductivity oxides are insulating."

The atoms of the major mantle materials are solid solutions and are in a disordered arrangement, which affects the way they conduct heat. Until now, the effect of this disorder on the way heat was conducted could only be estimated with experiments at low pressures. The pressure dependence on thermal conductivity has not been addressed in disordered materials before.

"We squeezed the samples between two diamond tips in an anvil cell and measured the thermal conductivity of the samples, debuting a technique called time-domain thermoreflectance," remarked co-author Alexander Goncharov. "We went up to 600,000 times atmospheric pressure at room temperature. This technique allows us to measure the thermal properties of the material from the change in the reflectance of the material's surface, thus avoiding the need of contacting the material of interest as required by conventional techniques. We then compared the results to theoretical models."

The scientists also showed that there is less dependence of thermal conductivity on pressure than had been predicted. Calculations showed that at the core-mantle boundary there is an estimated total heat flow of 10.4 terawatts across the Earth.

"The results provide important bounds on the degree to which heat is transferred by convection as opposed to conduction in the lower mantle," said Russell J. Hemley, director of Carnegie's Geophysical Laboratory. "The next step will be to examine effects of different mineral components on the thermal conductivity and to better understand the atomic scale basis of convective motion of these materials within the broader context of mantle dynamics."

"The results suggest that this technique could really advance other high pressure and temperature studies of the deep Earth and provide a better understanding of how Earth is evolving and how materials act under the intense conditions," concluded Goncharov.

###

This research was supported by the National Science Foundation, The Carnegie DOE Alliance Center (CDAC), and Energy Frontier Research in Extreme Environments Center ( EFree).

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

END



ELSE PRESS RELEASES FROM THIS DATE:

Bubbles are the new lenses for nanoscale light beams

2013-08-09
Bending light beams to your whim sounds like a job for a wizard or an a complex array of bulky mirrors, lenses and prisms, but a few tiny liquid bubbles may be all that is necessary to open the doors for next-generation, high-speed circuits and displays, according to Penn State researchers. To combine the speed of optical communication with the portability of electronic circuitry, researchers use nanoplasmonics -- devices that use short electromagnetic waves to modulate light on the nanometer scale, where conventional optics do not work. However, aiming and focusing this ...

Tahiti: A very hot biodiversity hot spot in the Pacific

2013-08-09
A collaborative biological survey that focused on the insects of French Polynesia has resulted in the discovery of over 100 tiny predatory beetle species in Tahiti, 28 of these species newly described in the open-access journal ZooKeys. The predatory beetles range in size from 3-8 mm long, and have evolutionarily lost their flight wings, making them homebodies living in small patches of mountain forest. The author, James Liebherr of Cornell University, states "It is exhilarating working with such a fauna, because every new locality or ecological situation has the high ...

The code of objects

2013-08-09
Opening our eyes and seeing the world before us, full of objects, is a simple action we may take for granted. Yet our brain is constantly carrying out a huge analysis only to let us see a flower, a pen, the face of our children. Where exactly in our brain does shape become meaning? A group of scientists coordinated by Davide Zoccolan of SISSA of Trieste, in collaboration with the team headed over by Riccardo Zecchina of Polytechnic University of Turin (within the Programma Neuroscienze 2008/2009 financed by Compagnia di San Paolo), studied a specific area of the brain ...

The day before death: A new archaeological technique gives insight into the day before death

2013-08-09
The day before the child's death was not a pleasant one, because it was not a sudden injury that killed the 10-13 year old child who was buried in the medieval town of Ribe in Denmark 800 years ago. The day before death was full of suffering because the child had been given a large dose of mercury in an attempt to cure a severe illness. This is now known to chemist Kaare Lund Rasmussen from University of Southern Denmark – because he and his colleagues have developed a new methodology that can reveal an unheard amount of details from very shortly before a person's death. ...

New hope for improved TB treatments

2013-08-09
Researchers at the University of Southampton have identified new markers of tuberculosis (TB) that may help in the development of new diagnostic tests and treatments. Published online in the Journal of Infectious Diseases, the study investigated the proteins that are released by a break down of the lung structure in TB patients. Lung damage causes both transmission of infection and mortality. They found that fragments released by break down of the lung's key proteins (collagen and elastin), are increased in the sputum of patients with TB. They also discovered that ...

Whole-genome sequencing uncovers the mysteries of the endangered Chinese alligator

2013-08-09
August 9, 2013, Shenzhen, China - In a study published in Cell Research, Chinese scientists from Zhejiang University and BGI have completed the genome sequencing and analysis of the endangered Chinese alligator (Alligator sinensis). This is the first published crocodilian genome, providing a good explanation of how terrestrial-style reptiles adapt to aquatic environments and temperature-dependent sex determination (TSD). The Chinese alligator is a member of the alligator family that lives in China. It is critically endangered with a population of ~100 wild and ~10,000 ...

New treatment for brittle bone disease found

2013-08-09
A new treatment for children with brittle bone disease has been developed by the University of Sheffield and Sheffield Children's Hospital. The study of the new treatment for children with the fragile bone disease Osteogenesis Imperfecta was published this week in the world's leading general medical journal, The Lancet. This is the first study to clearly demonstrate that the use of the medicine risedronate can not only reduce the risk of fracture in children with brittle bones but also have rapid action - the curves for fracture risk begin to diverge after only 6 weeks ...

The skinny on cocaine

2013-08-09
Chronic cocaine use may reduce the body's ability to store fat, new research from the University of Cambridge suggests. The scientists found that cocaine use may cause profound metabolic changes which can result in dramatic weight gain during recovery, a distressing phenomenon that can lead to relapse. It was previously widely believed that cocaine suppresses the appetite and that the problematic weight gain during rehabilitation was a result of patients substituting food for drugs. Dr Karen Ersche, from the Behavioural and Clinical Neuroscience Institute at the University ...

Addressing ethical, social, and cultural issues in global health research

2013-08-09
TORONTO -- Resolving complex ethical, social and cultural issues in the early stage of a global health research project or clinical trial can improve the impact and quality of that research, a new report says. The current practice for researchers is to seek approval for a study or trial from a research ethics board, usually at an academic institution, late in the process when many important decisions have already been made. But this can leave many complex and messy ethical, social and cultural issues on the table, according to Dr. Jim Lavery, a research scientist in the ...

Successful treatment of triple negative breast cancer by modulation of the OGF-OGFr axis

2013-08-09
Researchers at The Pennsylvania State University College of Medicine, led by Dr. Ian S. Zagon, have discovered that a novel biological pathway, the OGF-OGFr axis, can be modulated in human triple-negative breast cancer cells to inhibit proliferation. According to BreastCancer.org 1 in 8 women in the U.S. will develop invasive breast cancer and more than 39,000 deaths occur annually. Approximately 15 to 20% of all breast cancers are designated as triple-negative meaning that the cancer cells lack estrogen and progesterone receptors, and do not overexpress human epidermal ...

LAST 30 PRESS RELEASES:

Fatty liver in pregnancy may increase risk of preterm birth

World record for lithium-ion conductors

Researchers map 7,000-year-old genetic mutation that protects against HIV

KIST leads next-generation energy storage technology with development of supercapacitor that overcomes limitations

Urine, not water for efficient production of green hydrogen

Chip-scale polydimethylsiloxane acousto-optic phase modulator boosts higher-resolution plasmonic comb spectroscopy

Blood test for many cancers could potentially thwart progression to late stage in up to half of cases

Women non-smokers still around 50% more likely than men to develop COPD

AI tool uses face photos to estimate biological age and predict cancer outcomes

North Korea’s illegal wildlife trade threatens endangered species

Health care workers, firefighters have increased PFAS levels, study finds

Turning light into usable energy

Important step towards improving diagnosis and treatment of brain metastases

Maternal cardiometabolic health during pregnancy associated with higher blood pressure in children, NIH study finds

Mercury levels in the atmosphere have decreased throughout the 21st century

This soft robot “thinks” with its legs

Biologists identify targets for new pancreatic cancer treatments

Simple tweaks to a gene underlie the stench of rotten-smelling flowers

Simple, effective interventions reduce emissions from Bangladesh’s informal brick kilns

Ultrasound-guided 3D bioprinting enables deep-tissue implant fabrication in vivo

Soft limbs of flexible tubes and air enable dynamic, autonomous robotic locomotion

Researchers develop practical solution to reduce emissions and improve air quality from brick manufacturing in Bangladesh

Durham University scientists solve 500-million-year fossil mystery

Red alert for our closest relatives

3D printing in vivo using sound

Global Virus Network meeting unites Caribbean and Latin America to tackle emerging viral threats

MD Anderson Research Highlights for May 8, 2025

Study of Türkiye gold mine landslide highlights need for future monitoring

Researchers find new defense against hard-to-treat plant diseases

Characterization of research grant terminations at the National Institutes of Health

[Press-News.org] Deep Earth heat surprise