PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers find 'grammar' plays key role in activating genes

Insight from UCSF-led study may advance gene and cell therapy

2013-08-13
(Press-News.org) Researchers have probed deep into the cell’s genome, beyond the basic genetic code, to begin learning the “grammar” that helps determine whether or not a gene gets switched on to make the protein it encodes.

Their discovery -- that the ordering of specific DNA sequences in key regions of the genome affects the activity of genes -- might advance efforts to use gene and cell-based therapies to treat disease, said UCSF molecular biologist Nadav Ahituv, PhD, senior scientist on the study. The findings were published online in the journal Nature Genetics on July 28 and will appear in the September print edition.

In gene therapy, which is still experimental, specific genes are delivered to cells to make proteins that improve cellular physiology and fight disease. The new findings offer a way to activate these genes in specific tissues.

“Our work suggests a framework for the design of synthetic, tissue-specific DNA that could be used to control gene activation,” said Ahituv, an associate professor in the UCSF School of Pharmacy.

An individual’s genes are essentially the same in every cell. However, different combinations of genes are either silent or actively making protein in different cells. These patterns of gene activation make the lips differ from the liver, for instance, and determine whether the liver is functioning normally or not.

In their new study, Ahituv and colleagues made significant progress in understanding the integration of information and decision-making that goes on within the DNA regions that guide this gene activation.

The researchers determined that key bits of DNA, called “enhancers,” which serve as a type of gene regulator, do not operate in an all-or-nothing manner to control whether or not genes are active. Instead, the researchers found that changes in the arrangements of specific DNA sequences within these enhancers result in changes in levels of gene activity, similar to the way changing the syntax of a sentence affects its meaning.

Enhancers, when bound by proteins called transcription factors, play a necessary role in activating specific genes that may be quite a distance away within the cell’s chromosomes. The arrangement of DNA sequences in the enhancers determines the likelihood that matching transcription factors found in specific cell types will attach and cause the activation of genes, the scientists discovered.

The findings point to a strategy for designing DNA enhancers that might optimally guide gene activity in specific tissues targeted for gene therapy. Similar strategies might be used to help guide the development of cell therapies from stem cells for use in regenerative medicine to replace damaged tissue, according to Ahituv.

Like more than 98 percent of DNA in the human genome, enhancers lie outside genes, and are referred to as “non-coding.” Mutations in enhancers already have been implicated in human limb malformations, deafness, skeletal abnormalities, other birth defects and cancer, Ahituv said. Additional enhancer mutations may prove to be responsible for many associations between DNA variations and diseases that have been identified in genome-spanning probes to compare people with and without specific diseases, he said.

Working with mice and with human liver-cancer cells grown in the lab, the researchers relied on a powerful new lab technique in order to be able to perform what they describe as a “massively parallel experiment” to explore roles that specific combinations of enhancers play in guiding gene activation.

They designed a diverse library of nearly 5,000 enhancers, consisting of transcription-factor binding sites from 12 known liver-specific transcription factors, and placed each into a DNA package that could be injected into a mouse’s tail, move into it’s liver, and potentially be activated by transcription factors in the mouse’s liver cells. With this technique they were able to measure the ability of each enhancer to interact with liver transcription factors to turn on genes.

A technology developed recently in the laboratory of co-author Jay Shendure, PhD, from the University of Washington, allowed the research team to rapidly obtain a unique read-out — like a genetic bar code — each time one of the enhancers was involved in gene activation.

Leila Taher, PhD, and Ivan Ovcharenko, PhD, of the National Center for Biotechnology Information, part of the National Library of Medicine, also contributed to the study by developing algorithms used to design the synthetic enhancers and to analyze the large amounts of data gathered.

The genetic code was cracked a half-century ago. It specifies how DNA’s four nucleic acid, alphabet-building blocks — A, C, T, and G — encode protein. As cellular machinery reads through a gene’s long DNA sequences, sequential three-letter combinations of these nucleic acids, called codons, specify which amino acids will in turn be linked together to make the gene-encoded protein.

But molecular biologists have been slower to unravel the mysteries of development as it unfolds through cell division and maturation through different patterns of gene activation, and slower to understand the role of DNA outside of genes.



INFORMATION:



Additional authors of the Nature Genetics study include postdoctoral fellows Robin Smith, PhD, and Fumitaka Inoue, PhD, and graduate student Mee Kim from UCSF; and Rupali Patwardhan, a graduate student from the University of Washington. The research was funded by the National Institutes of Health, including major funding from the National Human Genome Research Institute, and by the UCSF Liver Center.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Follow UCSF
UCSF.edu | Facebook.com/ucsf | Twitter.com/ucsf | YouTube.com/ucsf



ELSE PRESS RELEASES FROM THIS DATE:

Seasonal carbon dioxide range expanding as more is added to Earth's atmosphere

2013-08-13
Levels of carbon dioxide in the atmosphere rise and fall each year as plants, through photosynthesis and respiration, take up the gas in spring and summer, and release it in fall and winter. Now the range of that cycle is expanding as more carbon dioxide is emitted from burning fossil fuels and other human activities, according to a study led by scientists at the Scripps Institution of Oceanography (SIO). The findings come from a multi-year airborne survey of atmospheric chemistry called HIAPER Pole-to-Pole Observations, or HIPPO. Results of the study are reported ...

Infectious diseases and climate change intersect with no simple answers

2013-08-13
Climate change is already affecting the spread of infectious diseases--and human health and biodiversity worldwide--according to disease ecologists reporting research results in this week's issue of the journal Science. Modeling disease outcomes from host and parasite responses to climate variables, they say, could help public health officials and environmental managers address the challenges posed by the changing landscape of infectious disease. "Earth's changing climate and the global spread of infectious diseases are threatening human health, agriculture and wildlife," ...

Scientists look into Earth's 'deep time' to predict future effects of climate change

2013-08-13
Climate change alters the way in which species interact with one another--a reality that applies not just to today or to the future, but also to the past, according to a paper published by a team of researchers in this week's issue of the journal Science. "We found that, at all time scales, climate change can alter biotic interactions in very complex ways," said paleoecologist Jessica Blois of the University of California, Merced, the paper's lead author. "If we don't incorporate this information when we're anticipating future changes, we're missing a big piece of the ...

Gold Pan Complex Fire

2013-08-13
Lightning ignited the Gold Pan Complex Fire on July 16, 2013, in the River of No Return Wilderness, Idaho. As of August 9, the fire had burned 17,103 acres of mixed conifer forest. Many of the burned trees may have already been dead as a result of insects. The fire has a high potential for growth. The Advanced Land Imager (ALI) on NASA's Earth Observing-1 (EO-1) satellite acquired this false color image of the fire on August 8, 2013. Newly burned land is dark red. Hot spots glow orange. Paler red areas may be old burn scars or forest infested with insects, such as the ...

Brain's flexible hub network helps humans adapt

2013-08-13
One thing that sets humans apart from other animals is our ability to intelligently and rapidly adapt to a wide variety of new challenges — using skills learned in much different contexts to inform and guide the handling of any new task at hand. Now, research from Washington University in St. Louis offers new and compelling evidence that a well-connected core brain network based in the lateral prefrontal cortex and the posterior parietal cortex — parts of the brain most changed evolutionarily since our common ancestor with chimpanzees — contains "flexible hubs" that coordinate ...

New gene repair technique promises advances in regenerative medicine

2013-08-13
MADISON, Wis. — Using human pluripotent stem cells and DNA-cutting protein from meningitis bacteria, researchers from the Morgridge Institute for Research and Northwestern University have created an efficient way to target and repair defective genes. Writing today (Monday, Aug. 12, 2013) in the Proceedings of the National Academy of Sciences, the team reports that the novel technique is much simpler than previous methods and establishes the groundwork for major advances in regenerative medicine, drug screening and biomedical research. Zhonggang Hou of the Morgridge ...

Researchers optically levitate a glowing, nanoscale diamond

2013-08-13
Researchers at the University of Rochester have measured for the first time light emitted by photoluminescence from a nanodiamond levitating in free space. In a paper published this week in Optics Letters, they describe how they used a laser to trap nanodiamonds in space, and – using another laser – caused the diamonds to emit light at given frequencies. The experiment, led by Nick Vamivakas, an assistant professor of optics, demonstrates that it is possible to levitate diamonds as small as 100 nanometers (approximately one-thousandth the diameter of a human hair) in free ...

Research on which gender pays for dates shows change and resistance from convention

2013-08-13
ORANGE, Calif. – Chapman University's David Frederick will present new research at the 108th Annual Meeting of the American Sociological Association that examines men's and women's beliefs about who should pay for dates during courtship, and how couples actually go about splitting expenses. The paper, Who Pays for Dates? Following versus Challenging Conventional Gender Norms, contains survey data from more than 17,000 participants; a quarter of whom also provided written commentaries to explain their beliefs and actions regarding paying for dates. "The motivation for ...

Study challenges popular perception of new 'hookup culture' on college campuses

2013-08-13
NEW YORK CITY — A University of Portland study challenges the popular perception that there is a "new and pervasive hookup culture" among contemporary college students. "Recent research and popular media reports have described intimate relationships among contemporary college students as characterized by a new and pervasive hookup culture in which students regularly have sex with no strings attached," said study co-author Martin Monto, a sociology professor at the University of Portland. "This implies that the college campus has become a more sexualized environment and ...

A man's occupation linked to time spent on housework, study finds

2013-08-13
NEW YORK CITY — A woman's work is never done — or so the saying goes. Though women still do about two thirds of household chores, the division of labor may depend on what her mate does for a living. New research by University of Notre Dame Sociologist Elizabeth Aura McClintock shows that when married or cohabiting men are employed in heavily female occupations — like teaching, childcare work, or nursing — they spend more time doing housework, compared to when they are employed in traditionally male jobs. In addition, their wives or partners spend less time doing housework, ...

LAST 30 PRESS RELEASES:

Thirty-year mystery of dissonance in the “ringing” of black holes explained

Less intensive works best for agricultural soil

Arctic rivers project receives “national champion” designation from frontiers foundation

Computational biology paves the way for new ALS tests

Study offers new hope for babies born with opioid withdrawal syndrome

UT, Volkswagen Group of America celebrate research partnership

New Medicare program could dramatically improve affordability for cancer drugs – if patients enroll

Are ‘zombie’ skin cells harmful or helpful? The answer may be in their shapes

University of Cincinnati Cancer Center presents research at AACR 2025

Head and neck, breast, lung and survivorship studies headline Dana-Farber research at AACR Annual Meeting 2025

AACR: Researchers share promising results from MD Anderson clinical trials

New research explains why our waistlines expand in middle age

Advancements in muon detection: Taishan Antineutrino Observatory's innovative top veto tracker

Chips off the old block

Microvascular decompression combined with nerve combing for atypical trigeminal neuralgia

Cutting the complexity from digital carpentry

Lung immune cell type “quietly” controls inflammation in COVID-19

Fiscal impact of expanded Medicare coverage for GLP-1 receptor agonists to treat obesity

State and sociodemographic trends in US cigarette smoking with future projections

Young adults drive historic decline in smoking

NFCR congratulates Dr. Robert C. Bast, Jr. on receiving the AACR-Daniel D. Von Hoff Award for Outstanding Contributions to Education and Training in Cancer Research

Chimpanzee stem cells offer new insights into early embryonic development

This injected protein-like polymer helps tissues heal after a heart attack

FlexTech inaugural issue launches, pioneering interdisciplinary innovation in flexible technology

In Down syndrome mice, 40Hz light and sound improve cognition, neurogenesis, connectivity

Methyl eugenol: potential to inhibit oxidative stress, address related diseases, and its toxicological effects

A vascularized multilayer chip reveals shear stress-induced angiogenesis in diverse fluid conditions

AI helps unravel a cause of Alzheimer's disease and identify a therapeutic candidate

Coalition of Autism Scientists critiques US Department of Health and Human Services Autism Research Initiative

Structure dictates effectiveness, safety in nanomedicine

[Press-News.org] Researchers find 'grammar' plays key role in activating genes
Insight from UCSF-led study may advance gene and cell therapy