(Press-News.org) Pasadena, CA— A team of astronomers from three institutions has developed a new type of telescope camera that makes higher resolution images than ever before, the culmination of 20 years of effort. The team has been developing this technology at telescope observatories in Arizona and now has deployed the latest version of these cameras in the high desert of Chile at the Magellan 6.5m (21 foot) telescope. Carnegie's Alan Uomoto and Tyson Hare, joined by a team of researchers from the University of Arizona and Arcetri Observatory in Italy, will publish three papers containing the highest-resolution images ever taken, as well as observations that answer questions about planetary formation, in The Astrophysical Journal.
"It was very exciting to see this new camera make the night sky look sharper than has ever before been possible" said Laird Close of the University of Arizona, who was the project's principal scientist. "We, for the first time, can make deep images that resolve objects just 0.02 arcseconds across—this is a very small angle—it is like resolving the width of a dime seen from 100 miles away, or like resolving a convoy of three school busses driving together on the surface of the Moon."
This improvement results from the use of a large 6.5m telescope for photography at its theoretical resolution limit for wavelengths of visible light. Previously, large telescopes could make sharp photos only in infrared (long wavelength) light. Even large telescopes, those equipped with complex adaptive optics imaging cameras, could only make blurry images in visible light. The new camera can work in the visible spectrum and can make high-resolution photos, because as the resolution moves towards bluer wavelengths, the image sharpness improves.
To correct for atmospheric turbulence, the team developed a very powerful adaptive optics system that floats a thin (1.6 mm –1/16 of inch thick) curved glass mirror (85 cm across) on a magnetic field 9.2m above the big primary mirror of the telescope. This, so-called Adaptive Secondary Mirror (ASM) can change its shape at 585 points on its surface 1000 times a second. In this manner the "blurring" effects of the atmosphere can be removed, and thanks to the high density of actuators on this mirror, astronomers can see the visible sky more clearly than ever before.
"The Magellan community is delighted to have this powerful new capability, a final addition to our current instrument suite," said Wendy Freedman, director of the Carnegie Observatories. "It also represents a significant technical milestone for the Giant Magellan Telescope."
The new adaptive optics system, called MagAO, has already made some important scientific discoveries. As the system was being tested, the team tried to resolve the famous star that gives the Great Orion Nebulae most of its UV light. This 1 million-year-old star is called Theta 1 Ori C and it is about 44 times the mass of the Sun. It was already known to be a binary star (two stars rotating around each other); however, the separation between them is so small that this famous pair has never been resolved into two stars in a direct telescope photo. Once MagAO and VisAO (its visible-light camera) were pointed towards Theta Ori 1 C, the results were exciting and immediate.
The team also mapped out all the positions of the brightest nearby cluster stars and was able to detect very small motions as the stars slowly revolved around each other. Indeed a small group of five stars called Theta 1 Ori B was is likely a bound "mini-cluster" of stars, one that may eject the lowest mass star of the five in the near future.
The team also managed to address a longstanding question about how planets form. Scientists have long wondered whether the disks of gas and dust that surround a protoplanet are affected by the strong ionizing light and wind coming from a massive star, one like Theta 1 Ori C. The team used MagAO and VisAO to look for red light from ionized hydrogen gas to trace how the strong UV light and wind from Theta 1 Ori C affects the disks around its neighboring stars. MagAO's photo shows that a pair of stars some 7 arcseconds away from Theta 1 Ori C was heavily distorted into "teardrop" shapes as the strong UV light and wind create shock fronts and drag gas downwind of the star, a very rare example of a low mass pair of young disks.
Another mystery about planetary formation is how the dust and gas are redistributed in a young disk. The team used VisAO's special simultaneous/spectral differential imager (SDI) to image one of the rare "silhouette" disks in Orion. The disk is in front of the M42 nebula and so the astronomers could see the dark shadow cast as the dust in the disk absorbed the background light of the nebula. The SDI camera allowed the light from the star to be removed at a very high level, leaving, for the first time, a clear look at the silhouette, demonstrating that MagAO can make visible images of even very faint stars.
INFORMATION:
This work was supported by the National Science Foundation MRI, TSIP, and ATI grant programs.
The ASM itself was produced by Microgate and ADS of Italy, and the University of Arizona's Steward Mirror Lab. The MagAO pyramid wavefront sensor was developed at the Arcetri Observatory in Italy. The Magellan telescopes are run by a partnership of the Carnegie institute, University of Arizona, Harvard University, MIT, and the University of Michigan.
The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
Highest-ever resolution photos of the night sky
2013-08-22
ELSE PRESS RELEASES FROM THIS DATE:
Tuberculosis genomes portray secrets of pathogen's success
2013-08-22
MADISON, Wis. – By any measure, tuberculosis (TB) is a wildly successful pathogen. It infects as many as two billion people in every corner of the world, with a new infection of a human host estimated to occur every second.
Now, thanks to a new analysis of dozens of tuberculosis genomes gathered from around the world, scientists are getting a more detailed picture of why TB is so prevalent and how it evolves to resist countermeasures. Writing today (Aug. 21, 2013) in the journal Public Library of Science (PLoS) Pathogens, a team led by University of Wisconsin-Madison ...
What is your heart attack risk?
2013-08-22
Researchers in India have carried out a data mining exercise to determine which are the most important risk factors in increasing the chances of an individual suffering a heart attack. Writing in the International Journal of Biomedical Engineering and Technology, they confirm that the usual suspects high blood cholesterol, intake of alcohol and passive smoking play the most crucial role in "severe", "moderate" and "mild" cardiac risks, respectively.
Subhagata Chattopadhyay of the Camellia Institute of Engineering in Kolkata adds that being male aged between 48 and 60 ...
UA astronomers take sharpest photos ever of the night sky
2013-08-22
Astronomers at the University of Arizona, the Arcetri Observatory near Florence, Italy and the Carnegie Observatory have developed a new type of camera that allows scientists to take sharper images of the night sky than ever before.
The team has been developing this technology for more than 20 years at observatories in Arizona, most recently at the Large Binocular Telescope, or LBT, and has now deployed the latest version of these cameras in the high desert of Chile at the Magellan 6.5-meter telescope.
"It was very exciting to see this new camera make the night sky ...
Rising mountains, cooling oceans prompted spread of invasive species 450 million years ago
2013-08-22
ATHENS, Ohio (Aug. 21, 2013)—New Ohio University research suggests that the rise of an early phase of the Appalachian Mountains and cooling oceans allowed invasive species to upset the North American ecosystem 450 million years ago.
The study, published recently in the journal PLOS ONE, took a closer look at a dramatic ecological shift captured in the fossil record during the Ordovician period. Ohio University scientists argue that major geological developments triggered evolutionary changes in the ancient seas, which were dominated by organisms such as brachiopods, corals, ...
Study: Disease caused by repeat brain trauma in athletes may affect memory, mood, behavior
2013-08-22
MINNEAPOLIS – New research suggests that chronic traumatic encephalopathy (CTE), a brain disease associated with repeat brain trauma including concussions in athletes, may affect people in two major ways: initially affecting behavior or mood or initially affecting memory and thinking abilities. The study appears in the August 21, 2013, online issue of Neurology®, the medical journal of the American Academy of Neurology. CTE has been found in amateur and professional athletes, members of the military and others who experienced repeated head injuries, including concussions ...
NASA sees another Earth-directed CME
2013-08-22
On August 21, 2013 at 1:24 am EDT, the sun erupted with an Earth-directed coronal mass ejection, or CME, a solar phenomenon that can send billions of tons of particles into space and reach Earth one to three days later. These particles cannot travel through the atmosphere to harm humans on Earth, but they can affect electronic systems in satellites and on the ground.
Experimental NASA research models, based on observations from NASA's Solar Terrestrial Relations Observatory show that the CME left the sun at speeds of around 380 miles per second, which is a fairly common ...
NASA's Fermi enters extended mission
2013-08-22
During its five-year primary mission, NASA's Fermi Gamma-ray Space Telescope has given astronomers an increasingly detailed portrait of the universe's most extraordinary phenomena, from giant black holes in the hearts of distant galaxies to thunderstorms on Earth.
But its job is not done yet. On Aug. 11, Fermi entered an extended phase of its mission -- a deeper study of the high-energy cosmos. This is a significant step toward the science team's planned goal of a decade of observations, ending in 2018.
"As Fermi opens its second act, both the spacecraft and its instruments ...
After a fire, before a flood: NASA's Landsat directs restoration to at-risk areas
2013-08-22
While the 138,000-acre Silver Fire still smoldered, forest restoration specialists were on the job. They analyzed maps created using Landsat satellite data to determine where the burn destroyed vegetation and exposed soil – and where to focus emergency restoration efforts.
"The map looked like a big red blob," said Penny Luehring, the U.S. Forest Service's Burned Area Emergency Response and watershed improvement program leader, based in Albuquerque, N.M.
Red means high-severity fire, she explained – and the red areas were concentrated in a watershed drainage that fed ...
How does your garden grow?
2013-08-22
Food and biofuel crops could be grown and maintained in many places where it wasn't previously possible, such as deserts, landfills and former mining sites, thanks to an inexpensive, non-chemical soil additive.
The additive, a simple mixture of organic waste, such as chicken manure, and zeolite, a porous volcanic rock, could be used to support agriculture in both the developed and developing world, while avoiding the serious environmental consequences associated with the overuse of chemical fertilisers. The mixture permits a controlled release of nutrients, the regulation ...
Prison education cuts recidivism and improves employment, study finds
2013-08-22
Prison inmates who receive general education and vocational training are significantly less likely to return to prison after release and are more likely to find employment than peers who do not receive such opportunities, according to a new RAND Corporation report.
The findings, from the largest-ever meta-analysis of correctional educational studies, suggest that prison education programs are cost effective, with a $1 investment in prison education reducing incarceration costs by $4 to $5 during the first three years post-release.
"We found strong evidence that correctional ...