(Press-News.org) Much as human siblings can have vastly different personalities despite their similar resemblance and genetics, two closely related species of electric fish from the Amazon produce very different electric signals. These species, new to science, are described in the open access journal ZooKeys by Drs. John Sullivan of Cornell University in Ithaca, New York, Jansen Zuanon of the National Amazonian Research Institute in Manaus, Brazil and Cristina Cox Fernandes of the University of Massachusetts, Amherst.
The two new species are bluntnose knifefish, genus Brachyhypopomus, that live under rafts of unrooted grasses and water hyacinth along the margins of the Amazon River called "floating meadows." These are weakly electric relatives of South America's famous electric "eel" (not a true eel) that can produce strong electric discharges of hundreds of volts. By contrast, these weakly fishes produce pulses of only a few hundred millivolts from an organ under the body that extends out onto a filamentous tail. Nearby objects in the water create distortions to the electric field that are sensed by receptor cells on the fishes' skin. In this way, they are able to "electrolocate" through their complex aquatic environment at night. Their short electric pulses, too weak to be sensed by touch, are also used to communicate the sender's species identity and gender to other electric fishes.
"The most striking differences between these two similar species have to do with their electric organs and their electric organ discharges, or EODs," says lead author John Sullivan, Curatorial Affiliate at the Cornell University Museum of Vertebrates. "If it weren't for these traits, we undoubtedly would have thought they were a single species. The one we are calling Brachyhypopomus bennetti has a huge electric organ, a short, fat tail, and produces a monophasic EOD; the other one that we're calling Brachyhypopomus walteri has a more typical electric organ, a long thin tail, and a more typical biphasic EOD."
AUDIO:
This is an audio recording of the electric organ discharges of Brachyhypopomus walteri made by placing electrodes attached to an amplifier at the head and tail of the fish. These...
Click here for more information.
It turns out the monophasic EOD of the new species Brachyhypopomus bennetti is highly unusual. Most species of this kind of knifefish produce EOD waveforms with both a positive and negative phase to them, as viewed on an oscilloscope: essentially alternating current. In this way, there is no net positive or negative current generated by the signal. "All of this fish's relatives, including its newly described sister species, have biphasic EODs," says Sullivan. "For that reason we know that this trait evolved in this species' lineage. The interesting question is why."
One widely accepted idea is that the biphasic EOD with its reduced amount of direct current (DC) is an adaptation to hide from predatory fish, like catfishes and electric eels, that are equipped with a type of electroreceptor that are sensitive to DC. So why would one species seemingly court danger by evolving a monophasic EOD?
The only other electric fish in the Amazon with a similar monophasic EOD is the fearsome electric eel. This fish has both a weak EOD used for electrolocation and communication as well as a much more powerful EOD used to stun prey and for defense. A theory proposed by Dr. Philip Stoddard of Florida International University contends that, in much the same way that the Viceroy butterfly—a species tasty to birds—evolved wing color patterns to mimic the distasteful Monarch butterfly, the harmless B. bennetti 's EOD waveform evolved to mimic that of the electric eel, a species electroreceptive predatory fishes may have learned to avoid.
AUDIO:
This is an audio recording of resting electric organ discharge of Brachyhypopomus bennetti.
Click here for more information.
In this paper, the authors suggest an additional possible benefit of of B. bennetti's monophasic EOD. Unlike biphasic species, B. bennetti's EOD waveform is largely unaffected after their tails are partially bitten off by predators, a common type of injury in this species. They suggest that this species' preference for floating meadow habitat near river channels may put them at particularly high risk of predation and 'tail grazing' by other fishes.
The authors show that the EOD waveforms of Brachyhypopomus species with biphasic EODs are severely altered after such injuries, whereas those of B. bennetti are not. "Any change to the EOD waveform likely impairs electroreception and communication and the monophasic EOD waveform may have been favored by natural selection in a species that suffers a lot of tail injuries," says Sullivan. "Selection for both EOD stability and mimicry of electric eels could be going on simultaneously…both hypotheses make predictions that should be tested," said Sullivan.
INFORMATION:
The research that led to the discovery of the two new Brachyhypopomus species was funded by the National Science Foundation of the United States and CNPq of Brazil.
Original Source
Sullivan JP, Zuanon J, Cox Fernandes C (2013) Two new species and a new subgenus of toothed Brachyhypopomus electric knifefishes (Gymnotiformes, Hypopomidae) from the central Amazon and considerations pertaining to the evolution of a monophasic electric organ discharge. ZooKeys 327: 1–34. doi: 10.3897/zookeys.327.5427
AC or DC? 2 newly described electric fish from the Amazon are wired differently
2013-08-28
ELSE PRESS RELEASES FROM THIS DATE:
Specialist nurses as good as doctors in managing rheumatoid arthritis patients
2013-08-28
Patients attending clinical nurse specialist clinics do not get inferior treatment to that offered by consultant rheumatologists, the results of a major new clinical trial have revealed.
The results of the multi-centre trial at the University of Leeds, funded by Arthritis Research UK, showed that there may be some clinical benefit to people with rheumatoid arthritis, whose condition is managed in clinics run by rheumatology clinical nurse specialists, especially with respect to their disease activity, pain control, physical function and general satisfaction with their ...
Molecular motors: Power much less than expected?
2013-08-28
An innovative measurement method was used at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw for estimating power generated by motors of single molecule in size, comprising a few dozens of atoms only. The findings of the study are of crucial importance for construction of future nanometer machines – and they do not instil optimism.
Nanomachines are devices of the future. Composed of a very little number of atoms, they would be in the range of billionth parts of a meter in size. Construction of efficient nanomachines would lead most likely ...
UK children less likely to be diagnosed with ADHD
2013-08-28
New research suggests that children are far less likely to be diagnosed with Attention deficit hyperactivity disorder (ADHD) in the UK than they are in the USA. However, the same study, led by the University of Exeter Medical School, suggests that autism diagnosis is still rising. The study is published online in the Journal of Autism Developmental Disorders, published by Springer, and was supported by the NIHR Collaboration for Leadership in Applied Health Research and Care in the South West Peninsula (NIHR PenCLAHRC).
ADHD is thought to be the most common disorder of ...
Not the end of the world: Why Earth's greatest mass extinction was the making of modern mammals
2013-08-28
The first mammals arose in the Triassic period, over 225 million years ago. These early furballs include small shrew-like animals such as Morganucodon from England, Megazostrodon from South Africa, and Bienotherium from China.
They had differentiated teeth (incisors, canines, molars) and large brains and were probably warm-blooded and covered in fur – all characteristics that make them stand apart from their reptile ancestors, and which contribute to their huge success today.
However, new research from the University of Lincoln, the National Museum in Bloemfontein, ...
Butterfly wings + carbon nanotubes = new 'nanobiocomposite' material
2013-08-28
Leveraging the amazing natural properties of the Morpho butterfly's wings, scientists have developed a nanobiocomposite material that shows promise for wearable electronic devices, highly sensitive light sensors and sustainable batteries. A report on the new hybrid material appears in the journal ACS Nano.
Eijiro Miyako and colleagues explain that Morpho butterfly wings have natural properties that are beyond the capabilities of any current technology to reproduce artificially. In addition to being lightweight, thin and flexible, the butterfly's wings absorb solar energy, ...
Oldest solar twin identified
2013-08-28
Astronomers have only been observing the Sun with telescopes for 400 years — a tiny fraction of the Sun's age of 4.6 billion years. It is very hard to study the history and future evolution of our star, but we can do this by hunting for rare stars that are almost exactly like our own, but at different stages of their lives. Now astronomers have identified a star that is essentially an identical twin to our Sun, but 4 billion years older — almost like seeing a real version of the twin paradox in action [1].
Jorge Melendez (Universidade de São Paulo, Brazil), the leader ...
MOND predicts dwarf galaxy feature prior to observations
2013-08-28
A modified law of gravity correctly predicted, in advance of the observations, the velocity dispersion -- the average speed of stars within a galaxy relative to each other -- in 10 dwarf satellite galaxies of the Milky Way's giant neighbor Andromeda.
The relatively large velocity dispersions observed in these types of dwarf galaxies is usually attributed to dark matter. Yet predictions made using the alternative hypothesis Modified Newtonian Dynamics (MOND) succeeded in anticipating the observations.
Stacy McGaugh, professor of astronomy at Case Western Reserve, and ...
Using a form of 'ice that burns' to make potable water from oil and gas production
2013-08-28
In the midst of an intensifying global water crisis, scientists are reporting development of a more economical way to use one form of the "ice that burns" to turn very salty wastewater from fracking and other oil and gas production methods into water for drinking and irrigation. The study on the method, which removes more than 90 percent of the salt, appears in the journal ACS Sustainable Chemistry & Engineering.
Yongkoo Seol and Jong-Ho Cha explain that salty wastewater is a byproduct of oil and gas production, including hydraulic fracturing, or fracking. These methods ...
Producing hydrogen from water with carbon/charcoal powder
2013-08-28
In the latest advance in efforts to find an inexpensive way to make hydrogen from ordinary water — one of the keys to the much-discussed "hydrogen economy" — scientists are reporting that powder from high-grade charcoal and other forms of carbon can free hydrogen from water illuminated with laser pulses. A report on the discovery appears in ACS' Journal of Physical Chemistry C.
Ikuko Akimoto and colleagues point out that traditional approaches to breaking down water, which consists of hydrogen and oxygen, involve use of expensive catalysts or electric current passed through ...
Remembering a famous debate 400 years ago and water's still-unsolved mysteries
2013-08-28
For online and print audiences deep into lazy late-summer-day reading, yearning for diversions from everyday cares, how about a glimpse 400 years back in time at a famous clash between Galileo and an arch-enemy over why ice floats on water? That debate, between a giant in the history of science and a little-remembered naysayer who challenged Galileo's idea that Earth revolves around the sun, is the topic of a story in the current edition of Chemical & Engineering News. C&EN is the weekly newsmagazine of the American Chemical Society, the world's largest scientific society.
Sarah ...