(Press-News.org) New evidence has emerged which supports the long-debated theory that life on Earth may have started on Mars.
Professor Steven Benner will tell geochemists gathering today (Thursday 29 Aug) at the annual Goldschmidt conference that an oxidized mineral form of the element molybdenum, which may have been crucial to the origin of life, could only have been available on the surface of Mars and not on Earth. "In addition", said Professor Benner "recent studies show that these conditions, suitable for the origin of life, may still exist on Mars."
"It's only when molybdenum becomes highly oxidized that it is able to influence how early life formed," explains Professor Benner, from The Westheimer Institute for Science and Technology in the USA. "This form of molybdenum couldn't have been available on Earth at the time life first began, because three billion years ago the surface of the Earth had very little oxygen, but Mars did. It's yet another piece of evidence which makes it more likely life came to Earth on a Martian meteorite, rather than starting on this planet."
The research Professor Benner will present at the Goldschmidt conference tackles two of the paradoxes which make it difficult for scientists to understand how life could have started on Earth.
The first is dubbed by Professor Benner as the 'tar paradox'. All living things are made of organic matter, but if you add energy such as heat or light to organic molecules and leave them to themselves, they don't create life. Instead, they turn into something more like tar, oil or asphalt.
"Certain elements seem able to control the propensity of organic materials to turn into tar, particularly boron and molybdenum, so we believe that minerals containing both were fundamental to life first starting," says Professor Benner. "Analysis of a Martian meteorite recently showed that there was boron on Mars; we now believe that the oxidized form of molybdenum was there too."
The second paradox is that life would have struggled to start on the early Earth because it was likely to have been totally covered by water. Not only would this have prevented sufficient concentrations of boron forming – it's currently only found in very dry places like Death Valley – but water is corrosive to RNA, which scientists believe was the first genetic molecule to appear. Although there was water on Mars, it covered much smaller areas than on early Earth.
"The evidence seems to be building that we are actually all Martians; that life started on Mars and came to Earth on a rock," says Professor Benner. "It's lucky that we ended up here nevertheless, as certainly Earth has been the better of the two planets for sustaining life. If our hypothetical Martian ancestors had remained on Mars, there might not have been a story to tell."
INFORMATION:
Please mention the Goldschmidt Conference in any story from this press release
For more information, please contact Goldschmidt press officer, Tom Parkhill, email tom@parkhill.it Telephone: +39 349 238 8191 (Italian number).
Professor Benner is available at the following email: sbenner@ffame.org
Notes to editors:
1. The Goldschmidt Conference is jointly sponsored by the European Association of Geochemistry and the Geochemical Society. The annual, five-day event brings together around 4000 of the world's leading geochemists, covering topics as diverse as planetary formation, volcanoes, tectonics, climate change and oceans.
Goldschmidt2013 – the 23rd Goldschmidt conference – is being held in Florence between 25-30 August. It is managed this year by the European Association of Geochemistry (EAG). http://goldschmidt.info/2013/
2. Founded in 1985 to promote geochemical research, the European Association of Geochemistry (EAG) has now grown to a membership of over 3000. It is a not-for-profit organisation which provides a forum for the presentation and exchange of ideas between geochemists across Europe. EAG produces two journals – Chemical Geology and Geochemical Perspective. http://www.eag.eu.com
3. The Geochemical Society (GS) was founded in 1955 with the aim of encouraging the application of chemistry to the solution of geological and cosmological problems. It now has over 3000 members and sponsors the journal Geochimica et Cosmochimica Acta. http://www.geochemsoc.org.
4. Professor Steve Benner began his career at Harvard and the Swiss Federal Institute of Technology in Zurich. He left a faculty position at the University of Florida in 2004 to found The Westheimer Institute of Science and Technology, named after his former PhD supervisor Frank Westheimer, and the Foundation for Applied Molecular Evolution. Benner's group was the first to synthesize a gene, creating the field of synthetic biology, and many of his advances in this field have had major significance in human medicine, for example in tests for HIV and hepatitis. His research seeks knowledge about the ancient origin of life, and looks for the essential, universal features of life by developing tests for life on other planets, by using paleogenetics to resurrect and study ancient proteins that may have belonged to long-extinct ancestors and by recreating pre-biotic chemistry to explain the chemical origin of life. Benner is also the founder of two successful companies, EraGen Biosciences and Firebird Biomolecular Sciences.
END
A team of scientists has reported direct visualization of magnetic charge crystallization in an artificial spin ice material, a first in the study of a relatively new class of frustrated artificial magnetic materials-by-design known as "Artificial Spin Ice." These charges are analogs to electrical charges with possible applications in magnetic memories and devices. The research team's findings appear in the August 29 issue of the journal Nature.
The unique properties of spin ice materials have fascinated scientists since they were first discovered in the late 1990s in ...
STANFORD, Calif. - Pulmonary hypertension, a deadly form of high blood pressure that develops in the lungs, may be caused by an inflammation-producing molecular pathway that damages the inner lining of blood vessels, according to a new study by researchers at the Stanford University School of Medicine.
The results, which will be published Aug. 28 in Science Translational Medicine, suggest that using medications to block this pathway could lead to the first-known cure for the disease, apart from lung transplantation. The new research could also lead to a better understanding ...
The world's largest ice sheet could be more vulnerable to the effects of climate change than previously thought, according to new research from Durham University.
A team from the Department of Geography used declassified spy satellite imagery to create the first long-term record of changes in the terminus of outlet glaciers – where they meet the sea – along 5,400km of the East Antarctic Ice Sheet's coastline. The imagery covered almost half a century from 1963 to 2012.
Using measurements from 175 glaciers, the researchers were able to show that the glaciers underwent ...
In this month's edition of Physics World, Paula Findlen from Stanford University profiles Laura Bassi -- an emblematic and influential physicist from the 18th century who can be regarded as the first ever woman to forge a professional scientific career.
Once described as the "woman who understood Newton", Laura Bassi -- born in the city of Bologna in 1711 -- rose to celebrity status in Italy and all across the globe, gaining a reputation as being the best physics teacher of her generation and helping to develop the discipline of experimental physics.
Bassi held numerous ...
A malaria control method that targets mosquito larvae and pupae as they mature in standing water could be an important supplementary measure in the fight against the disease, according to a new report.
The Cochrane review -- led by the London School of Hygiene & Tropical Medicine in collaboration with Durham University and other researchers in the UK and US -- is the first systematic review looking at using larval source management (LSM) to control malaria, which causes an estimated 660,000 deaths worldwide every year. It found evidence that the method may significantly ...
The international consortium MetaHIT, which includes the research group of Jeroen Raes (VIB / Vrije Universiteit Brussel), publishes in the leading journal Nature that there is a link between richness of bacterial species in the intestines and the susceptibility for medical complications related to obesity. The researchers demonstrated that people with fewer bacterial species in their intestines are more likely to develop complications, such as cardiovascular diseases and diabetes. A flora with decreased bacterial richness appears to function entirely differently to the ...
CAMBRIDGE, Mass-- It's a long, expensive, risky road to turn a scientific breakthrough into a treatment that can help patients. Fewer organizations are trying to tackle the challenges alone, says a new paper from MIT researchers published August 28 in the journal Science Translational Medicine.
An essential new way to move discoveries forward has emerged in the form of multi-stakeholder collaborations involving three or more different types of organizations, such as drug companies, government regulators and patient groups, write Magdalini Papadaki, a research associate, ...
CHAPEL HILL, N.C. -- Problems with a key group of enzymes called topoisomerases can have profound effects on the genetic machinery behind brain development and potentially lead to autism spectrum disorder (ASD), according to research announced today in the journal Nature. Scientists at the University of North Carolina School of Medicine have described a finding that represents a significant advance in the hunt for environmental factors behind autism and lends new insights into the disorder's genetic causes.
"Our study shows the magnitude of what can happen if topoisomerases ...
An analysis of gravity and topography data from Saturn's largest moon, Titan, has revealed unexpected features of the moon's outer ice shell. The best explanation for the findings, the authors said, is that Titan's ice shell is rigid and that relatively small topographic features on the surface are associated with large roots extending into the underlying ocean. The study is published in the August 29 issue of the journal Nature.
Led by planetary scientists Douglas Hemingway and Francis Nimmo at the University of California, Santa Cruz, the study used new data from NASA's ...
Here's a sobering fact for millions of young women heading back to school: The more alcohol they drink before motherhood, the greater their risk of future breast cancer.
That's according to new research from Washington University School of Medicine in St. Louis that, for the first time, links increased breast cancer risk to drinking between early adolescence and first full-term pregnancy. Previous studies have looked at breast cancer risk and alcohol consumption later in life or at the effect of adolescent drinking on noncancerous breast disease.
“More and more heavy ...