(Press-News.org) By lowering the expression of a single gene, researchers at the National Institutes of Health have extended the average lifespan of a group of mice by about 20 percent -- the equivalent of raising the average human lifespan by 16 years, from 79 to 95. The research team targeted a gene called mTOR, which is involved in metabolism and energy balance, and may be connected with the increased lifespan associated with caloric restriction.
A detailed study of these mice revealed that gene-influenced lifespan extension did not affect every tissue and organ the same way. For example, the mice retained better memory and balance as they aged, but their bones deteriorated more quickly than normal.
This study appears in the Aug. 29 edition of Cell Reports.
"While the high extension in lifespan is noteworthy, this study reinforces an important facet of aging; it is not uniform," said lead researcher Toren Finkel, M.D., Ph.D., at NIH's National Heart, Lung, and Blood Institute (NHLBI). "Rather, similar to circadian rhythms, an animal might have several organ-specific aging clocks that generally work together to govern the aging of the whole organism."
Finkel, who heads the NHLBI's Laboratory of Molecular Biology in the Division of Intramural Research, noted that these results may help guide therapies for aging-related diseases that target specific organs, like Alzheimer's. However, further studies in these mice as well as human cells are needed to identify exactly how aging in these different tissues is connected at the molecular level.
The researchers engineered mice that produce about 25 percent of the normal amount of the mTOR protein, or about the minimum needed for survival. The engineered mTOR mice were a bit smaller than average, but they otherwise appeared normal.
The median lifespan for the mTOR mice was 28.0 months for males and 31.5 months for females, compared to 22.9 months and 26.5 months for normal males and females, respectively. The mTOR mice also had a longer maximal lifespan; seven of the eight longest-lived mice in this study were mTOR mice. This lifespan increase is one of the largest observed in mice so far.
While the genetically modified mTOR mice aged better overall, they showed only selective improvement in specific organs. They generally outperformed normal mice of equivalent age in maze and balance tests, indicating better retention of memory and coordination. Older mTOR mice also retained more muscle strength and posture. However, mTOR mice had a greater loss in bone volume as they aged, and they were more susceptible to infections at old age, suggesting a loss of immune function.
In addition to the NHLBI, this study was carried out by intramural researchers at the NIH's National Cancer Institute; National Institute of Diabetes and Digestive and Kidney Diseases; and National Institute on Aging.
INFORMATION:
To schedule an interview with Dr. Finkel, please contact the NHLBI Office of Communications at 301-496-4236 or nhlbinews@nhlbi.nih.gov.
Resources:
NHLBI Laboratory of Molecular Biology: http://www.nhlbi.nih.gov/research/intramural/researchers/pi/finkel-toren/index.html
NIH Intramural Research Program: http://irp.nih.gov/
Part of the National Institutes of Health, the National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at http://www.nhlbi.nih.gov.
About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.
NIH...Turning Discovery Into Health
END
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information.
The study was conducted at New York University by Lila Davachi, an associate professor in NYU's Department of Psychology and Center for Neural Science, and Kaia Vilberg, now a postdoctoral researcher at the University of Texas' Center for Vital Longevity and School of Behavioral and Brain Sciences in Dallas.
"When ...
New research in mice reveals why the body is so slow to recover from jet-lag and identifies a target for the development of drugs that could help us to adjust faster to changes in time zone.
With funding from the Wellcome Trust and F. Hoffmann La Roche, researchers at the University of Oxford and F. Hoffmann La Roche have identified a mechanism that limits the ability of the body clock to adjust to changes in patterns of light and dark. And the team show that if you block the activity of this gene in mice, they recover faster from disturbances in their daily light/dark ...
MANHASSET, NY – Investigators at The Feinstein Institute for Medical Research have discovered a new way to measure the progression of Huntington's disease, using positron emission tomography (PET) to scan the brains of carriers of the gene. The findings are published in the September issue of The Journal of Clinical Investigation.
Huntington's disease causes the progressive breakdown of nerve cells in the brain, which leads to impairments in movement, thinking and emotions. Most people with Huntington's disease develop signs and symptoms in their 40s or 50s, but the onset ...
When a cancer cell sloughs off the edge of a tumor in the breast, it faces a tough road to survive. The cell must not only remain physically intact as it rushes through blood vessels, but it also must find a new organ to lodge itself in, take in enough nutrients and oxygen to stay alive, and begin dividing, all while escaping notice by the body's immune system.
A team of Howard Hughes Medical Institute (HHMI) scientists has discovered that some loose breast cancer cells, have a leg up on survival—the genes they express make them more likely to prosper in bone tissue. ...
SAN FRANCISCO, CA—August 29, 2013—There is no easy way to study diseases of the brain. Extracting brain cells, or neurons, from a living patient is difficult and risky, while examining a patient's brain post-mortem usually only reveals the disease's final stages. And animal models, while incredibly informative, have frequently fallen short during the crucial drug-development stage of research. But scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF) have taken a potentially more powerful approach: an advanced stem-cell technique ...
CAMBRIDGE, Mass. (August 29, 2013) – Whitehead Institute researchers have used the gene regulation system CRISPR/Cas to engineer mouse genomes containing reporter and conditional alleles in one step. Animals containing such sophisticated engineered alleles can now be made in a matter of weeks rather than years and could be used to model diseases and study gene function.
"We've used CRISPR/Cas to mutate genes before, but the nature of the targeted mutations has been unpredictable," says Whitehead Founding Member Rudolf Jaenisch. "Now we can make specific deletions defined ...
OAKLAND, Calif., August 29, 2013 — Overweight women with low levels of the hormone adiponectin prior to pregnancy are nearly seven times more likely to develop gestational diabetes, according to a Kaiser Permanente study published today in the journal Diabetes Care. Adiponectin protects against insulin resistance, inflammation and heart disease.
Using Kaiser Permanente HealthConnect®, an electronic health records system, the researchers retrospectively identified about 4,000 women who gave voluntary blood samples between 1985 and 1996 during routine care and subsequently ...
A genetic phenomenon that allows for the selection of multiple genetic mutations that all lead to a similar outcome -- for instance the ability to digest milk -- has been characterised for the first time in humans.
The phenomenon, known as a 'soft selective sweep', was described in the population of Ethiopia and reveals that individuals from the Eastern African population have adapted to be able to digest milk, but via different mutations in their genetic material.
A team of geneticists from UCL, University of Addis Ababa and Roskilde University have shown that five ...
Los Angeles -- While in the past century there have been several documented examples of young, healthy athletes who have died suddenly of heart disease during competitive sporting events, a new study finds that this problem also extends to chimpanzees. According to an article published today in the SAGE journal Veterinary Pathology, Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), a human heart disease that causes sudden cardiac death in teenagers and young adults (particularly healthy athletes), has now been identified in chimpanzees.
"It is the first description ...
ANN ARBOR—Imagine that garbage haulers don't exist. Slowly, the trash accumulates in our offices, our homes, it clogs the streets and damages our cars, causes illness and renders normal life impossible.
Garbage in the brain, in the form of dead cells, must also be removed before it accumulates, because it can cause both rare and common neurological diseases, such as Parkinson's. Now, University of Michigan researchers are a leap closer to decoding the critical process of how the brain clears dead cells, said Haoxing Xu, associate professor in the U-M Department of Molecular, ...