(Press-News.org) HOUSTON, Sept. 5, 2013 – A University of Houston (UH) professor led a team of scientists to uncover the largest single volcano yet documented on Earth. Covering an area roughly equivalent to the British Isles or the state of New Mexico, this volcano, dubbed the Tamu Massif, is nearly as big as the giant volcanoes of Mars, placing it among the largest in the Solar System.
William Sager, a professor in the Department of Earth and Atmospheric Sciences at UH, first began studying the volcano about 20 years ago at Texas A&M's College of Geosciences. Sager and his team's findings appear in the Sept. 8 issue of Nature Geoscience, the monthly multi-disciplinary journal reflecting disciplines within the geosciences.
Located about 1,000 miles east of Japan, Tamu Massif is the largest feature of Shatsky Rise, an underwater mountain range formed 130 to 145 million years ago by the eruption of several underwater volcanoes. Until now, it was unclear whether Tamu Massif was a single volcano, or a composite of many eruption points. By integrating several sources of evidence, including core samples and data collected on board the JOIDES Resolution research ship, the authors have confirmed that the mass of basalt that constitutes Tamu Massif did indeed erupt from a single source near the center.
"Tamu Massif is the biggest single shield volcano ever discovered on Earth," Sager said. "There may be larger volcanoes, because there are bigger igneous features out there such as the Ontong Java Plateau, but we don't know if these features are one volcano or complexes of volcanoes."
Tamu Massif stands out among underwater volcanoes not just for its size, but also its shape. It is low and broad, meaning that the erupted lava flows must have traveled long distances compared to most other volcanoes on Earth. The seafloor is dotted with thousands of underwater volcanoes, or seamounts, most of which are small and steep compared to the low, broad expanse of Tamu Massif.
"It's not high, but very wide, so the flank slopes are very gradual," Sager said. "In fact, if you were standing on its flank, you would have trouble telling which way is downhill. We know that it is a single immense volcano constructed from massive lava flows that emanated from the center of the volcano to form a broad, shield-like shape. Before now, we didn't know this because oceanic plateaus are huge features hidden beneath the sea. They have found a good place to hide."
Tamu Massif covers an area of about 120,000 square miles. By comparison, Hawaii's Mauna Loa – the largest active volcano on Earth – is approximately 2,000 square miles, or roughly 2 percent the size of Tamu Massif. To find a worthy comparison, one must look skyward to the planet Mars, home to Olympus Mons. That giant volcano, which is visible on a clear night with a good backyard telescope, is only about 25 percent larger by volume than Tamu Massif.
The study relies on two distinct, yet complementary, sources of evidence – core samples collected on Integrated Ocean Drilling Program (IODP) Expedition 324 (Shatsky Rise Formation) in 2009, and seismic reflection data gathered on two separate expeditions of the R/V Marcus G. Langseth in 2010 and 2012. The core samples, drilled from several locations on Tamu Massif, showed that thick lava flows (up to 75 feet thick), characterize this volcano. Seismic data from the R/V Langseth cruises revealed the structure of the volcano, confirming that the lava flows emanated from its summit and flowed hundreds of miles downhill into the adjacent basins.
According to Sager, Tamu Massif is believed to be about 145 million years old, and it became inactive within a few million years after it was formed. Its top lies about 6,500 feet below the ocean surface, while much of its base is believed to be in waters that are almost four miles deep.
"It's shape is different from any other sub-marine volcano found on Earth, and it's very possible it can give us some clues about how massive volcanoes can form," Sager said. "An immense amount of magma came from the center, and this magma had to have come from the Earth's mantle. So this is important information for geologists trying to understand how the Earth's interior works."
INFORMATION:
The project was funded by the National Science Foundation, both through direct grants and through its Integrated Ocean Drilling Program, an international research program dedicated to advancing scientific understanding of the Earth through drilling, coring and monitoring the subsea floor.
About the University of Houston
The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 40,700 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at http://www.uh.edu/news-events/.
About the College of Natural Sciences and Mathematics
The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.
To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.
For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.
Scientists confirm existence of largest single volcano on earth
UH researcher says massive underwater shield volcano rivals largest in solar system
2013-09-06
ELSE PRESS RELEASES FROM THIS DATE:
Sept. 5, 2013 update 2 -- satellite data shows a very active tropical Atlantic, Gabrielle weakens
2013-09-06
Tropical Storm Gabrielle has weakened to a depression by 11 a.m. EDT on Sept. 5, while three other low pressure areas struggle to develop in the Northern Atlantic Ocean. NOAA's GOES-East satellite captured a panoramic view of all four systems while NASA's Aqua satellite captured infrared data on Gabrielle and an adjacent low.
NOAA's GOES-East satellite captured a view of Gabrielle, an unnamed system east of it, and Systems 99L and 98L on Sept. 5 at 10:45 a.m. EDT. NOAA's GOES-East satellite captured all four systems in a view across the entire Atlantic Ocean. The image ...
UCLA researchers describe new form of irritable bowel syndrome
2013-09-06
UCLA researchers have described a new form of irritable bowel syndrome (IBS) that occurs after an acute bout of diverticulitis, a finding that may help lead to better management of symptoms and relief for patients.
The discovery of this new condition, called Post-Diverticulitis Irritable Bowel Syndrome (PDV-IBS), validates the irritable bowel symptoms that many patients report long after suffering a bout of diverticulitis, but that many physicians wave off as being part of the original condition, said study senior author Dr. Brennan Spiegel, an associate professor of ...
Coldest brown dwarfs blur lines between stars and planets
2013-09-06
Astronomers are constantly on the hunt for ever-colder star-like bodies, and two years ago a new class of such objects was discovered by researchers using NASA's WISE space telescope. However, until now no one has known exactly how cool their surfaces really are - some evidence suggested they could be room temperature.
A new study shows that while these brown dwarfs, sometimes called failed stars, are indeed the coldest known free-floating celestial bodies, they are warmer than previously thought with temperatures about 250-350 degrees Fahrenheit.
To reach such low ...
IBEX spacecraft measures changes in the direction of interstellar winds buffeting our solar system
2013-09-06
Data from NASA's Interstellar Boundary Explorer (IBEX) spacecraft reveal that neutral interstellar atoms are flowing into the solar system from a different direction than previously observed.
Interstellar atoms flow past the Earth as the solar system passes through the surrounding interstellar cloud at 23 kilometers per second (50,000 miles per hour). The latest IBEX measurements of the interstellar wind direction were discovered to differ from those made by the Ulysses spacecraft in the 1990s. That difference led the IBEX team to compare the IBEX measurements to data ...
Blue-green algae a 5-tool player in converting waste to fuel
2013-09-06
In the baseball world, a superstar can do five things exceptionally well: hit, hit for power, run, throw and field.
Fuzhong Zhang
In the parallel universe of the microbiological world, there is a current superstar species of blue-green algae that, through its powers of photosynthesis and carbon dioxide fixation, or uptake, can produce (count 'em) ethanol, hydrogen, butanol, isobutanol and potentially biodiesel. Now that's some five-tool player.
In baseball, you call that player Willie Mays or Mike Trout. In microbiology, it goes by Synechocystis 6803, a versatile, ...
Finally mapped: The brain region that distinguishes bits from bounty
2013-09-06
This news release is available in French. In comparing amounts of things -- be it the grains of sand on a beach, or the size of a sea gull flock inhabiting it -- humans use a part of the brain that is organized topographically, researchers have finally shown. In other words, the neurons that work to make this "numerosity" assessment are laid out in a shape that allows those most closely related to communicate and interact over the shortest possible distance.
This layout, referred to as a topographical map, is characteristic of all primary senses -- sight, hearing, ...
Pico-world of molecular bioscavengers, mops and sponges being designed
2013-09-06
Computer-designed proteins that can recognize and interact with small biological molecules are now a reality. Scientists have succeeded in creating a protein molecule that can be programmed to unite with three different steroids.
The achievement could have far wider ranging applications in medicine and other fields, according to the Protein Design Institute at the University of Washington.
"This is major step toward building proteins for use as biosensors or molecular sponges, or in synthetic biology — giving organisms new tools to perform a task," said one of the ...
UF: Newly discovered tiger shark migration pattern might explain attacks near Hawaii
2013-09-06
GAINESVILLE, Fla. --- The migration of mature female tiger sharks during late summer and fall to the main Hawaiian Islands, presumably to give birth, could provide insight into attacks in that area, according to a University of Florida scientist.
In a new seven-year study, researchers from UF and the University of Hawaii used new techniques to analyze the predators' movements in the Hawaiian archipelago, where recent shark incidents have gained international attention, including a fatal attack in August. The study revealed different patterns between males and females ...
University of Tennessee professor and student develop device to detect biodiesel contamination
2013-09-06
In 2010, a Cathay Pacific Airways plane was arriving in Hong Kong when the engine control thrusts seized up and it was forced to make a hard landing—injuring dozens. The potential culprit? Contaminated fuel.
The probability of contamination of diesel fuel is increasing as biodiesel becomes more popular and as distribution and supply systems use the same facilities to store and transport the two types of fuels.
A professor and student team at the University of Tennessee, Knoxville, has developed a quick and easy-to-use sensor that can detect trace amounts of biodiesel ...
Made-to-order materials
2013-09-06
The lightweight skeletons of organisms such as sea sponges display a strength that far exceeds that of manmade products constructed from similar materials. Scientists have long suspected that the difference has to do with the hierarchical architecture of the biological materials—the way the silica-based skeletons are built up from different structural elements, some of which are measured on the scale of billionths of meters, or nanometers. Now engineers at the California Institute of Technology (Caltech) have mimicked such a structure by creating nanostructured, hollow ...
LAST 30 PRESS RELEASES:
New route to ‘quantum spin liquid’ materials discovered for first time
Chang’e-6 basalts offer insights on lunar farside volcanism
Chang’e-6 lunar samples reveal 2.83-billion-year-old basalt with depleted mantle source
Zinc deficiency promotes Acinetobacter lung infection: study
How optogenetics can put the brakes on epilepsy seizures
Children exposed to antiseizure meds during pregnancy face neurodevelopmental risks, Drexel study finds
Adding immunotherapy to neoadjuvant chemoradiation may improve outcomes in esophageal cancer
Scientists transform blood into regenerative materials, paving the way for personalized, blood-based, 3D-printed implants
Maarja Öpik to take up the position of New Phytologist Editor-in-Chief from January 2025
Mountain lions coexist with outdoor recreationists by taking the night shift
Students who use dating apps take more risks with their sexual health
Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'
Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group
Depression research pioneer Dr. Philip Gold maps disease's full-body impact
Rapid growth of global wildland-urban interface associated with wildfire risk, study shows
Generation of rat offspring from ovarian oocytes by Cross-species transplantation
Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness
Compound metalens achieves distortion-free imaging with wide field of view
Age on the molecular level: showing changes through proteins
Label distribution similarity-based noise correction for crowdsourcing
The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050
Diabetes medication may be effective in helping people drink less alcohol
US over 40s could live extra 5 years if they were all as active as top 25% of population
Limit hospital emissions by using short AI prompts - study
UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research
Fayetteville police positive about partnership with social workers
Optical biosensor rapidly detects monkeypox virus
New drug targets for Alzheimer’s identified from cerebrospinal fluid
Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment
Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H
[Press-News.org] Scientists confirm existence of largest single volcano on earthUH researcher says massive underwater shield volcano rivals largest in solar system