(Press-News.org) (Santa Barbara, Calif.) — If you've ever wondered how you learn to like a food you dislike, a new study conducted by UC Santa Barbara's Craig Montell, Duggan Professor of Neuroscience in the Department of Molecular, Cellular, and Developmental Biology, may offer an answer. The work addresses a central question in neurobiology — how experience can alter animal behavior. The research, just published in Nature Neuroscience, was conducted by Montell's team, which includes lead author Yali Zhang, Rakesh Raghuwanshi, and Wei Shen.
Among the most widely observed, but poorly understood modifiable behavioral phenomena is that dietary experience can alter taste preferences. This is essential for survival, since animals from insects to humans have to respond to a changing food environment. Alterations in taste are well known in humans, as people from the Far East have different taste preferences than people from the West. Individuals who move from one culture to another typically learn to accept the local foods, some of which were originally aversive.
Using the fruit fly, Drosophila melanogaster, as an animal model, the researchers unraveled a mechanism to explain how animals modify their taste preferences. "This study was inspired by trying to understand how it is an animal learns to like foods they didn't like before," said Montell. "We want to understand taste proclivity because it is a universal behavior in all animals."
The researchers focused on camphor, an aversive but safe food additive. Historically, camphor has been used as a main flavoring ingredient for many desserts, including ice cream. They found that fruit flies learn to consume camphor-containing foods if they are fed long-term on a camphor diet. The same was not true of aversive, toxic tastants such as quinine or strychnine.
The alterations occurred through a mechanism involving changes in the animal's peripheral gustatory receptor neurons (GRNs), which occur within hairlike structures called sensilla. Of particular importance, Montell's team defined the cellular and molecular basis for the taste plasticity.
Long-term camphor exposure — for a fruit fly that lives only about two months this is only a few days — caused a reduction in the response by the Transient Receptor Potential-Like (TRPL) channel, a directly camphor-activated channel that brings ions such as calcium into the cell. For humans this might translate to mean that repeated exposure to disliked food over a period of weeks or months may result in the eventual acceptance of that food.
The fruit flies' reduced distaste for camphor occurred through a mechanism that involves the degradation of the TRPL protein by an enzyme called E3 ubiquitin ligase, or Ube3a, which targets specific protein substrates for degradation. Following the decline in TRPL, there was also a decrease in synaptic connections, but that was not sufficient to cause the taste adaptation. "We don't know what's activating the Ube3a, but it's tantalizing to speculate that it is calcium regulated," said Montell. "We think it's a combination of the decline in TRPL levels and the decrease in synaptic connections that together cause the change in behavior.
"We not only found that ubiquination is important and leads to degradation, but we also discovered that mutations in Ube3a prevent this taste plasticity," he continued. "This is because in the absence of Ube3a, TRPL is not ubiquinated so it is not degraded. This underscores that it's the decline in the TRPL levels that underlie this mechanism."
An interesting phenomenon was the reversibility of the process of accepting camphor as a food additive. The decline in TRPL levels and synaptic connections that accompany the flies' increased acceptance of camphor reverse after returning the flies long-term to a camphor-free diet.
Montell and his team surmise that the calcium influx resulting from increased activity of TRPL in the presence of camphor leads to increased internalization of the channel. "Then the ubiquin ligase itself might somehow get activated," he said. "Understanding that mechanism is one question for the future."
These findings not only show the molecular and cellular pathway that controls how diet changes taste proclivity in an animal, but also suggest a general neural mechanism underlying food experience-induced changes in taste preferences in other animals, including mammals. "Our work raises the possibility that reversible changes in taste receptor cells, as a result of long-term exposure to a specific diet, could contribute to a similar type of phenomenon in humans," concluded Montell. "If we come to understand this really well, someday it could be harnessed by the food industry."
INFORMATION:
Fruit flies demonstrate that diet experience can alter taste preferences, USCB study shows
2013-09-09
ELSE PRESS RELEASES FROM THIS DATE:
Large international study of COPD drug finds 2 types of inhalers equally safe and effective
2013-09-09
An international study led by a Johns Hopkins pulmonary expert finds that the drug tiotropium (marketed as the Spiriva brand), can be delivered safely and effectively to people with chronic obstructive pulmonary disease (COPD) in both "mist" and traditional "dry powder" inhalers.
The new Respimat inhaler, which delivers the drug in a mist form, is approved for use in Europe but not in the United States. The traditional inhaler, known as a HandiHaler, uses a dry powder form of the drug and is widely used in the U.S.
The study comparing the two drug-delivery systems ...
Indy 500 track continues to foster better technology for everyday driving
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
Indy 500 track continues to foster better technology for everyday driving
INDIANAPOLIS, Sept. 9, 2013 — The pavement recipe for the Indianapolis Motor Speedway (IMS), home of the Indianapolis 500, could be used to improve the smoothness, durability and safety of some of the 2 million miles of paved roads and streets where ...
The new allure of electric cars: Blazing-fast speeds
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
The new allure of electric cars: Blazing-fast speeds
INDIANAPOLIS, Sept. 9, 2013 — Already noted for saving gasoline and having zero emissions, electric cars have quietly taken on an unlikely new dimension –– the ability to reach blazing speeds that rival the 0-to-60 performance of a typical Porsche or BMW, and compete on some ...
New research provides early indications that recycled sewage water is safe for crop irrigation
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
New research provides early indications that recycled sewage water is safe for crop irrigation
INDIANAPOLIS, Sept. 9, 2013 — The first study under realistic field conditions has found reassuringly low levels of pharmaceuticals and personal care products (PPCPs) in crops irrigated with recycled sewage water, scientists ...
American Chemical Society presidential symposium: Career advancement opportunities
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
American Chemical Society presidential symposium: Career advancement opportunities
INDIANAPOLIS, Sept. 9, 2013 — Even though the Great Recession officially ended more than three years ago in the U.S., lingering effects continue to impact careers for thousands of scientists. Advancing those careers for chemists and other ...
How bedbugs shrug off pesticides and simple measures to deal with it
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
How bedbugs shrug off pesticides and simple measures to deal with it
INDIANAPOLIS, Sept. 9, 2013 — The bedbug's most closely guarded secrets — stashed away in protective armor that enables these blood-sucking little nasties to shrug off insecticides and thrive in homes and hotels — are on the agenda here today at a major ...
Advance in using biopsy samples in understanding environmental causes of cancer
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
Advance in using biopsy samples in understanding environmental causes of cancer
INDIANAPOLIS, Sept. 9, 2013 — In an advance in determining the role of environmental agents in
causing cancer, scientists today described development of a long-sought way to use biopsy samples from cancer patients to check on human exposure ...
Scientific symposium today on healthful antioxidants in plant-based foods
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
Scientific symposium today on healthful antioxidants in plant-based foods
INDIANAPOLIS, Sept. 9, 2013 — With millions of people tailoring their diets to include more healthful antioxidants — and these "polyphenols" getting tremendous attention among nutritionists, food scientists and physicians — the world's largest ...
Scientific symposium today on green chemistry and the environment
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
Scientific symposium today on green chemistry and the environment
INDIANAPOLIS, Sept. 9, 2013 — Chemical processes are involved in production of almost 96 percent of all manufactured goods, and some of the latest advances in efforts to redesign those processes from the ground up are on the agenda here today at the 246th National ...
Chemical & Engineering News celebrates its 90th anniversary
2013-09-09
Contact: Michael Bernstein
m_bernstein@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6042
Michael Woods
m_woods@acs.org
317-262-5907 (Indianapolis Press Center, Sept. 6-11)
202-872-6293
American Chemical Society
Chemical & Engineering News celebrates its 90th anniversary
INDIANAPOLIS, Sept. 9, 2013 — A weekly news magazine that has been around since before Time began celebrates its 90th anniversary this week with a special issue commemorating chemistry's contributions over the past nine decades to medicine, industry and other scientific ...