(Press-News.org) La Jolla, CA----In the past few years, as imaging tools and techniques have improved, scientists have been working tirelessly to build a detailed map of neural connections in the human brain---- with the ultimate hope of understanding how the mind works.
But determining how cells in the brain are physically connected is only the first clue for decoding our perceptions and behaviors. We also need to know the precise routes that information takes in the brain in a given context. Now, publishing their results September 8 in the journal Nature Neuroscience, researchers at the Salk Institute for Biological Studies have shown a striking example of the flexibility in neural circuitry and its influence on behaviors in worms, depending on the animals' environment.
The roundworm Caenorhabditis elegans has exactly 302 neurons----far less than the estimated 100 billion neurons a person has----and we already know how each of them is connected. That, in addition to how easily the tiny creature's cells can be manipulated, allows researchers to ask what sort of information passes through the circuits----in molecular-and circuit-level detail----and what are the behavioral consequences of this information flow.
Even with a comprehensive map of the worm's neuronal connections in hand, however, scientists still don't know how the animal can interact with its environment in thousands of different ways. That's one big question that Sreekanth Chalasani, an assistant professor in Salk's Molecular Neurobiology Laboratory and Sarah Leinwand, a doctoral student at the University of California, San Diego, sought to answer.
In C. elegans, thanks to studies performed more than 20 years ago, many sensory neurons were identified to have distinct roles such as sensing temperature, pheromones, salt and odors. To know what these cells did, scientists had zapped them one-by-one with a laser and measured the worms' behaviors. These studies implicated one neuron in the detection of increased salt in the worm's surroundings.
In the new study, rather than ablating individual sensory neurons, Leinwand and Chalasani imaged worms that expressed genetically encoded calcium indicators in their neurons, which caused the cells to light up when active. Surprisingly, after exposure to an attractive but high concentration of salt, the worms' olfactory sensory neuron lit up.
"We were extremely surprised to see that with these new tools, these new calcium sensors, we could discover that there was more than one type of neuron involved in processing sensory cues that people had thought were only sensed by single neurons," says Leinwand.
Using additional genetic manipulations and behavioral assays, the researchers showed that the olfactory neuron----while still important for sensing odorants----was crucial for the worm's movement toward salt within a certain concentration range. Unexpectedly, this neuron's response to salt also required the previously identified salt-sensing neuron. In fact, the olfactory neuron was not directly sensing salt but instead was being activated by the salt sensory neuron, they found.
What information was the salt-sensing neuron sending to the olfactory neuron? Neurons communicate with each other by sending chemical and electrical signals through close contacts with their neighbors. By testing worms whose signaling molecules had been genetically knocked out, Chalasani and Leinwand could see which were playing a role in transmission when the worm was stimulated by higher salt. From these experiments, they saw that a neuropeptide, a small protein present in neurons, was being released by the salt-sensing neuron to shape the animal's behavior.
Identifying the neuropeptide (or neuropeptides) responsible for the context-dependent signaling was the most challenging part of the study, because the worm has 115 genes that code for some 250 neuropeptides, Chalasani says. Luckily, there are only four different molecular machines that process all of these peptides; by using genetic knockouts of each of the four, Leinwand and Chalasani were quickly able to narrow the list down to about 40 genes which coded for insulin neuropeptides.
One by one, the team tracked olfactory neuron responses to high salt in worms missing each gene, finding that worms lacking the gene for an insulin neuropeptide known as INS-6 did not respond to increases in salt. Putting this peptide back restored the animal's normal responses to high salt.
"It was rewarding to see that, while there might be more than one peptide signal, the contributions from INS-6 are certainly significant," Leinwand says. She and Chalasani also found the specific receptor on the receiving end of the olfactory neurons.
That insulin was the main signaling molecule recruiting the olfactory neuron into a salt-sensing circuit was a big surprise.
"Traditionally, neuropeptides have been thought to modulate neuronal function over many seconds to many minutes," Chalasani says. "But in this particular instance, it looks like the insulin is acting in less than a second to transfer information from the salt-sensing neuron to the neuron which normally responds to odor."
Similar neuropeptide communication may also create flexible neural circuits that mediate the diverse behaviors that other animals and people perform in their environments. Insulin has many roles in people----it has been implicated in aging and metabolism, for example----but so far it has only been shown to function on a slower, minute time-scale.
Chalasani and Leinwand plan to investigate whether there are other fast neural circuit switches in worms----and if so, whether those switches act through neuropeptide signaling or some other mechanism. They're also interested in how the circuit switch changes as the animal ages. "You would expect that as the animal is aging, some of this communication becomes less efficient," Chalasani says.
INFORMATION:
This work was supported by the Searle Scholars Program, March of Dimes, Whitehall Foundation, Rita Allen Foundation, US National Institutes of Health and the National Science Foundation.
About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.
Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.
Insulin plays a role in mediating worms' perceptions and behaviors
Using salt-sniffing roundworms, Salk scientists help explain how the nervous system processes sensory information
2013-09-13
ELSE PRESS RELEASES FROM THIS DATE:
Poxue Huayu and Tianjing Busui Decoction for cerebral hemorrhage
2013-09-13
Dr. Jixiang Ren and team from the Affiliated Hospital to Changchun University of Chinese Medicine proposed a therapeutic principle for Poxue Huayu and Tianjing Busui (i.e., breaking blood stasis, replenishing essence). The researchers established cerebral hemorrhage rat models which were intragastrically administered 5, 10, 20 g/kg Poxue Huayu and Tianjing Busui Decoction, supplemented with Hirudo, raw rhubarb, raw Pollen Typhae, gadfly, Fructrs Trichosanthis, Radix Notoginseng, Rhizoma Acori Talarinowii, and glue of tortoise plastron, once a day, for 14 consecutive days. ...
Why can prenatal alcohol exposure lead to fetal alcohol syndrome?
2013-09-13
Clinical literature and animal experiments have shown that prenatal alcohol exposure in utero, especially during the early stages of pregnancy, can cause fetal alcohol syndrome. The pharmacological and toxicological mechanisms of ethanol are considered to be related to the effects of ceramide. As an important signal transduction molecule, ceramide participates in a variety of cellular transduction pathways and can modulate cell cycle, cellular differentiation, proliferation, and apoptosis. A recent study, published in the Neural Regeneration Research (Vol. 8, No. 23, 2013), ...
Autophagy and neurodegenerative disorders
2013-09-13
Autophagy is a highly conserved process through the evolution of species, from eukaryotic microorganisms to humans. Bulky cytoplasmic contents, organisms (bacteria, viruses) and soluble proteins are degraded by autophagy and reused for the synthesis of new molecules. This process is generally induced by a change of environmental conditions, such as nutrient deprivation, oxidative stress and ultraviolet radiation. However, it has also been associated with normal procedures like development, differentiation and defence against pathogens. In spite of offering protection to ...
A clinician's guide to managing moral distress
2013-09-13
As health care reform takes shape in the U.S., vast amounts of attention have been given to the fact that more and more people with pre-existing illnesses will have access to professional care to relieve their physical and emotional suffering. Far less public attention has been given to the nurses and physicians who provide that care, and the authors of a recent study say there is evidence that many already experience serious "moral distress" that may interfere with their own health and their efforts on behalf of seriously ill and dying patients.
"Studies and case histories ...
'Grassroots action' in livestock feeding to help curb global climate change
2013-09-13
SYDNEY, AUSTRALIA (13 September 2013)βIn a series of papers to be presented next week, scientists offer new evidence that a potent chemical mechanism operating in the roots of a tropical grass used for livestock feed has enormous potential to reduce greenhouse gas emissions.
Referred to as "biological nitrification inhibition" or BNI, the mechanism markedly reduces the conversion of nitrogen applied to soil as fertilizer into nitrous oxide, according to papers prepared for the 22nd International Grasslands Congress. Nitrous oxide is the most powerful and aggressive greenhouse ...
Model organism gone wild
2013-09-13
Model organisms, brought into labs because they are easy to work with, adapt to the lab, often shedding characteristics that allowed them to survive in the wild. Scientists who work with model organisms rarely look at the wild strains, but when they do, they can be surprised by what they find.
This is what happened with the soil-living social amoeba, Dictyostelium discoideum, or Dicty. The single-celled amoebas crawl through the soil eating bacteria until food becomes scarce. Then the amoebas gather by the tens of thousands to form a multicellular slug, which transforms ...
Toward a truly white organic LED
2013-09-13
SALT LAKE CITY, Sept. 13, 2013 β By inserting platinum atoms into an organic semiconductor, University of Utah physicists were able to "tune" the plastic-like polymer to emit light of different colors β a step toward more efficient, less expensive and truly white organic LEDs for light bulbs of the future.
"These new, platinum-rich polymers hold promise for white organic light-emitting diodes and new kinds of more efficient solar cells," says University of Utah physicist Z. Valy Vardeny, who led a study of the polymers published online Friday, Sept. 13 in the journal ...
Pest control, economic globalization and the involvement of policy makers
2013-09-13
A new special issue of NeoBiota journal has been published, following the 2012 meeting of the International Pest Risk Mapping Workgroup (IPRMW). The workshop was sponsored by the OECD's Co-operative Research Program on Biological Resource Management for Sustainable Agricultural Systems, and focused on pest risks in the foodchain. The new issue addresses the interface between pest risk science and policy in an attempt to secure adequate pest control measures against potential invasions accompanying economic globalization and the intensified movement of people and goods.
With ...
Tiny plankton could have big impact on climate
2013-09-13
As the climate changes and oceans' acidity increases, tiny plankton seem set to succeed. An international team of marine scientists has found that the smallest plankton groups thrive under elevated carbon dioxide (CO2) levels. This could cause an imbalance in the food web as well as decrease ocean CO2 uptake, an important regulator of global climate. The results of the study, conducted off the coast of Svalbard, Norway, in 2010, are now compiled in a special issue published in Biogeosciences, a journal of the European Geosciences Union.
"If the tiny plankton blooms, it ...
Diet during pregnancy and early life affects children's behavior and intelligence
2013-09-13
Researchers from the NUTRIMENTHE project have addressed this in a five-year study involving hundreds of European families with young children. Researchers looked at the effect of, B-vitamins, folic acid, breast milk versus formula milk, iron, iodine and omega-3 fatty acids, on the cognitive, emotional and behavioural development of children from before birth to age nine.
The study has found that folic acid, which is recommended in some European countries, to be taken by women during the first three months of pregnancy, can reduce the likelihood of behavioural problems ...
LAST 30 PRESS RELEASES:
Preschool education: A key to supporting allophone children
CNIC scientists discover a key mechanism in fat cells that protects the body against energetic excess
Chemical replacement of TNT explosive more harmful to plants, study shows
Scientists reveal possible role of iron sulfides in creating life in terrestrial hot springs
Hormone therapy affects the metabolic health of transgender individuals
Survey of 12 European countries reveals the best and worst for smoke-free homes
First new treatment for asthma attacks in 50 years
Certain HRT tablets linked to increased heart disease and blood clot risk
Talking therapy and rehabilitation probably improve long covid symptoms, but effects modest
Ban medical research with links to the fossil fuel industry, say experts
Different menopausal hormone treatments pose different risks
Novel CAR T cell therapy obe-cel demonstrates high response rates in adult patients with advanced B-cell ALL
Clinical trial at Emory University reveals twice-yearly injection to be 96% effective in HIV prevention
Discovering the traits of extinct birds
Are health care disparities tied to worse outcomes for kids with MS?
For those with CTE, family history of mental illness tied to aggression in middle age
The sound of traffic increases stress and anxiety
Global food yields have grown steadily during last six decades
Children who grow up with pets or on farms may develop allergies at lower rates because their gut microbiome develops with more anaerobic commensals, per fecal analysis in small cohort study
North American Early Paleoindians almost 13,000 years ago used the bones of canids, felids, and hares to create needles in modern-day Wyoming, potentially to make the tailored fur garments which enabl
Higher levels of democracy and lower levels of corruption are associated with more doctors, independent of healthcare spending, per cross-sectional study of 134 countries
In major materials breakthrough, UVA team solves a nearly 200-year-old challenge in polymers
Wyoming research shows early North Americans made needles from fur-bearers
Preclinical tests show mRNA-based treatments effective for blinding condition
Velcro DNA helps build nanorobotic Meccano
Oceans emit sulfur and cool the climate more than previously thought
Nanorobot hand made of DNA grabs viruses for diagnostics and blocks cell entry
Rare, mysterious brain malformations in children linked to protein misfolding, study finds
Newly designed nanomaterial shows promise as antimicrobial agent
Scientists glue two proteins together, driving cancer cells to self-destruct
[Press-News.org] Insulin plays a role in mediating worms' perceptions and behaviorsUsing salt-sniffing roundworms, Salk scientists help explain how the nervous system processes sensory information