(Press-News.org) A class of proteins that controls visual system development in the young brain also appears to affect vulnerability to Alzheimer's disease in the aging brain. The proteins, which are found in humans and mice, join a limited roster of molecules that scientists are studying in hopes of finding an effective drug to slow the disease process.
"People are just beginning to look at what these proteins do in the brain. While more research is needed, these proteins may be a brand new target for Alzheimer's drugs," said Carla Shatz, Ph.D., the study's lead investigator. Dr. Shatz is a professor of biology and neurobiology at Stanford University in California, and the director of Stanford's interdisciplinary biosciences program, BioX.
She and her colleagues report that LilrB2 (pronounced "leer-bee-2") in humans and PirB ("peer-bee") in mice can physically partner with beta-amyloid, a protein fragment that accumulates in the brain during Alzheimer's disease. This in turn triggers a harmful chain reaction in brain cells. In a mouse model of Alzheimer's, depleting PirB in the brain prevented the chain reaction and reduced memory loss.
The research was funded in part by the National Eye Institute, the National Institute on Aging (NIA), and the National Institute of Neurological Disorders and Stroke (NINDS), all part of the National Institutes of Health. It is reported in the Sept. 20 issue of Science.
"These findings provide valuable insight into Alzheimer's, a complex disorder involving the abnormal build-up of proteins, inflammation and a host of other cellular changes," said Neil Buckholtz, Ph.D., director of the neuroscience division at NIA. "Our understanding of the various proteins involved, and how these proteins interact with each other, may one day result in effective interventions that delay, treat or even prevent this dreaded disease."
Alzheimer's disease is the most common cause of dementia in older adults, and affects as many as 5 million Americans. Large clumps—or plaques—of beta-amyloid and other proteins accumulate in the brain during Alzheimer's, but many researchers believe the disease process starts long before the plaques appear. Even in the absence of plaques, beta-amyloid has been shown to cause damage to brain cells and the delicate connections between them.
Dr. Shatz's discovery took a unique path. She is a renowned neuroscientist, but Alzheimer's disease is not her focus area. For decades, she has studied plasticity—the brain's capacity to learn and adapt—focusing mostly on the visual system.
"Dr. Shatz has always been a leader in the field of plasticity, and now she's taken yet another innovative step—giving us new insights into the abnormal plasticity that occurs in Alzheimer's disease," said Michael Steinmetz, Ph.D., a program director at NEI. "These findings rest squarely on basic research into the development of the visual system." NEI has funded Dr. Shatz for more than 35 years.
During development, the eyes compete to connect within a limited territory of the brain—a process known as ocular dominance plasticity. The competition takes place during a limited time in early life. If visual experience through one eye is impaired during that time—for example, by a congenital cataract (present from birth)—it can permanently lose territory to the other eye.
"Ocular dominance is a classic example of how a brain circuit can change with experience," Dr. Shatz said. "We've been trying to understand it at a molecular level for a long time."
Her search eventually led to PirB, a protein on the surface of nerve cells in the mouse brain. She discovered that mice without the gene for PirB have an increase in ocular dominance plasticity. In adulthood, when the visual parts of their brains should be mature, the connections there are still flexible. This established PirB as a "brake on plasticity" in the healthy brain, Dr. Shatz said.
It wasn't long before she began to wonder if PirB might also put a brake on plasticity in Alzheimer's disease. In the current study, she pursued that question with Taeho Kim, Ph.D., a postdoctoral fellow in her lab, and Christopher M. William, M.D., Ph.D., a neuropathology fellow at Massachusetts General Hospital in Boston. Bradley Hyman, M.D., Ph.D., a professor of neurology at Mass General, was a collaborator on the project.
First, the team repeated the genetic experiment that Dr. Shatz had done in normal mice—but this time, they deleted the PirB gene in the Alzheimer's mice. By about nine months of age, these mice typically develop learning and memory problems. But that didn't happen in the absence of PirB.
Next, the researchers began thinking about how PirB might fit into the Alzheimer's disease process, and particularly how it might interact with beta-amyloid. Dr. Kim theorized that since PirB resides on the surface of nerve cells, it might act as a binding site—or receptor—for beta-amyloid. Indeed, he found that PirB binds tightly to beta-amyloid, especially to tiny clumps of it that are believed to ultimately grow into plaques.
Beta-amyloid is known to weaken synapses—the connections between nerve cells. The researchers found that PirB appears to be an accomplice in this process. Without PirB, synapses in the mouse brain were resistant to the effects of beta-amyloid. Other experiments showed that binding between PirB and beta-amyloid can trigger a cascade of harmful reactions that can lead to the breakdown of synapses.
Although PirB is a mouse protein, humans have a closely related protein called LilrB2. The researchers found that this protein also binds tightly to beta-amyloid. By examining brain tissue from people with Alzheimer's disease, they also found evidence that LilrB2 may trigger the same harmful reactions that PirB can trigger in the mouse brain.
"These are novel results, and direct interaction between beta-amyloid and PirB-related proteins opens up welcome avenues for investigating new drug targets for Alzheimer's disease," said Roderick Corriveau, Ph.D., a program director at NINDS.
Dr. Shatz said she hopes to interest other researchers to work on developing drugs to block PirB and LilrB2. Currently, no drugs treat the underlying causes of Alzheimer's disease. Most of the interventions that have reached clinical testing are designed to clear away beta-amyloid. To date, only two other beta-amyloid receptors (PrP-C and EphB2) have been found and are being pursued as drug targets.
INFORMATION:
The study was funded by NEI grants EY002858 and EY020485, NIA grants AG041507 and AG005134, and NINDS grant NS069811. Other funding was provided by the Mathers Charitable Foundation, the Ellison Medical Foundation, Stanford University, the National Science Foundation, and the Howard Hughes Medical Institute.
Reference: Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT, and Shatz CJ. "Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer's model." Science, September 2013. DOI: 10.1126/science.1242077.
NEI leads the federal government's research on the visual system and eye diseases. NEI supports basic and clinical science programs that result in the development of sight-saving treatments. For more information, visit http://www.nei.nih.gov/.
NINDS is the nation's leading funder of research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease – a burden borne by every age group, by every segment of society, by people all over the world.
NIA leads the federal government effort conducting and supporting research on aging and the health and well-being of older people. NIA provides information on age-related cognitive change and neurodegenerative disease specifically at its Alzheimer's Disease Education and Referral (ADEAR) Center at http://www.nia.nih.gov/Alzheimers.
About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.
NIH...Turning Discovery Into Health®
Versatile proteins could be new target for Alzheimer's drugs
NIH-funded discovery began with asking how the brain learns to see
2013-09-20
ELSE PRESS RELEASES FROM THIS DATE:
Proteins that deliver leucine to prostate cancer cells are therapeutic targets
2013-09-20
Like normal cells, cancer cells require amino acids for growth, maintenance, and cell signaling, and L-type amino acid transporters (LATs) are the delivery vehicles that supply them. Metastatic, castration-resistant prostate cancer (CRPC) cells are highly dependent on LATs to deliver the amino acid leucine that the cells need for growth and proliferation, according to a study published September 19 in the Journal of the National Cancer Institute.
To investigate the function of LATs in prostate cancer, Qian Wang, Ph.D., of the Origins of Cancer Laboratory, Centenary Institute, ...
Study provides big-picture view of how cancer cells are supported by normal cells in and near tumors
2013-09-20
Cold Spring Harbor Laboratory -- Investigators at Cold Spring Harbor Laboratory (CSHL) today report important progress in research aimed at finding ways to fight cancer by targeting the local environment in which tumors grow and from which they draw sustenance.
The targeting of interactions between cancer cells and their environment together with the traditional tactic of directly targeting cancer cells with drugs or radiation is an important new front in the fight against cancer.
The study was conducted by two CSHL scientists from different disciplines who joined ...
Stanford scientists reveal how beta-amyloid may cause Alzheimer's
2013-09-20
STANFORD, Calif. — Scientists at the Stanford University School of Medicine have shown how a protein fragment known as beta-amyloid, strongly implicated in Alzheimer's disease, begins destroying synapses before it clumps into plaques that lead to nerve cell death.
Key features of Alzheimer's, which affects about 5 million Americans, are wholesale loss of synapses — contact points via which nerve cells relay signals to one another — and a parallel deterioration in brain function, notably in the ability to remember.
"Our discovery suggests that Alzheimer's disease starts ...
Circadian clock is key to firing up cell's furnace
2013-09-20
Each of our cells has an energy furnace, and it is called a mitochondrion. A Northwestern University-led research team now has identified a new mode of timekeeping that involves priming the cell's furnace to properly use stored fuel when we are not eating.
The interdisciplinary team has identified the "match" and "flint" responsible for lighting this tiny furnace. And the match is only available when the circadian clock says so, underscoring the importance of the biological timing system to metabolism.
"Circadian clocks are with us on Earth because they have everything ...
Geologists simulate deep earthquakes in the laboratory
2013-09-20
RIVERSIDE, Calif. — More than 20 years ago, geologist Harry Green, now a distinguished professor of the graduate division at the University of California, Riverside, and colleagues discovered a high-pressure failure mechanism that they proposed then was the long-sought mechanism of very deep earthquakes (earthquakes occurring at more than 400 km depth).
The result was controversial because seismologists could not find a seismic signal in the Earth that could confirm the results.
Seismologists have now found the critical evidence. Indeed, beneath Japan, they have even ...
New protein knowledge offers hope for better cancer treatment
2013-09-20
When the pharmaceutical industry develops new medicines – for example for cancer treatment – it is important to have detailed knowledge of the body's molecular response to the medicine.
"With a better knowledge of the many complex processes which are activated in connection with illness and medication, the better the possibility of developing new drugs. We have now moved closer to targeting and treating certain cancers using the so-called PARP inhibitors – medical inhibitors used in the latest types of cancer treatment. Certain types of tumours rely heavily on PARP proteins ...
MERS Co-V genomes reveal complex transmission patterns
2013-09-20
Genome sequencing has identified several infection transmission chains of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in humans. The study published in the Lancet, which produced the largest number of MERS-CoV genomes described to date, provides evidence that MERS-CoV transmission patterns are more complicated than previously considered.
Globally, 111 people have been diagnosed with MERS-CoV since 2012, including 52 deaths. Researchers from the Wellcome Trust Sanger Institute, Edinburgh University and University College London are working with the Kingdom ...
World Alzheimer Report 2013
2013-09-20
The World Alzheimer Report 2013 'Journey of Caring: An analysis of long-term care for dementia', released today, calls for governments around the world to make dementia a priority by implementing national plans, and by initiating urgent national debates on future arrangements for long-term care.
Alzheimer's Disease International (ADI) and Bupa commissioned a team of researchers, led by Professor Martin Prince from King's College London, to produce the report.
The report reveals that, as the world population ages, the traditional system of "informal" care by family, ...
Paracetamol improves exercise endurance in the heat
2013-09-20
Paracetamol has a significant effect on exercise performance and the body's ability to cope with the thermal challenge of exercise in the heat, shows a study published today [20 September] in Experimental Physiology.
The research team have previously shown that paracetamol can improve endurance performance through a reduction in exercise-induced pain. This study suggests, for the first time, that paracetamol can also improve the length of time someone can exercise for in hot conditions. The data suggests that this is achieved by reducing the body's temperature during ...
'Cascade of events' caused sudden explosion of animal life
2013-09-20
The explosion of animal life on Earth around 520 million years ago was the result of a combination of interlinked factors rather than a single underlying cause, according to a new study.
Dozens of individual theories have been put forward over the past few decades for this rapid diversification of animal species in the early Cambrian period of geological time.
But a paper by Professor Paul Smith of Oxford University and Professor David Harper of Durham University suggests a more holistic approach is required to discover the reasons behind what has become known as the ...
LAST 30 PRESS RELEASES:
ODS FeCrAl alloys endure liquid metal flow at 600 °C resembling a fusion blanket environment
A genetic key to understanding mitochondrial DNA depletion syndrome
The future of edge AI: Dye-sensitized solar cell-based synaptic device
Bats’ amazing plan B for when they can’t hear
Common thyroid medicine linked to bone loss
Vaping causes immediate effects on vascular function
A new clock to structure sleep
Study reveals new way to unlock blood-brain barrier, potentially opening doors to treat brain and nerve diseases
Viking colonizers of Iceland and nearby Faroe Islands had very different origins, study finds
One in 20 people in Canada skip doses, don’t fill prescriptions because of cost
Wildlife monitoring technologies used to intimidate and spy on women, study finds
Around 450,000 children disadvantaged by lack of school support for color blindness
Reality check: making indoor smartphone-based augmented reality work
Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain
Black men — including transit workers — are targets for aggression on public transportation, study shows
Troubling spike in severe pregnancy-related complications for all ages in Illinois
Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas
Need a landing pad for helicopter parenting? Frame tasks as learning
New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability
#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all
Earliest fish-trapping facility in Central America discovered in Maya lowlands
São Paulo to host School on Disordered Systems
New insights into sleep uncover key mechanisms related to cognitive function
USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery
Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance
3D-printing advance mitigates three defects simultaneously for failure-free metal parts
Ancient hot water on Mars points to habitable past: Curtin study
In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon
Simplicity is key to understanding and achieving goals
Caste differentiation in ants
[Press-News.org] Versatile proteins could be new target for Alzheimer's drugsNIH-funded discovery began with asking how the brain learns to see