PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

How the gut got its villi

Comparing species, researchers at Harvard SEAS and Harvard Medical School investigate a process they dub 'villification'

2013-09-25
(Press-News.org) "You are not just a ball of cells," says Clifford Tabin, George Jacob and Jacqueline Hazel Leder Professor of Genetics at Harvard Medical School (HMS).

The way cells organize within the human body allows us all to function the way we do, but a couple of Harvard professors are concerned as much with that developmental process as with the end result. Tabin shares a common perspective with L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics at the Harvard School of Engineering and Applied Sciences (SEAS), professor of organismic and evolutionary biology, and professor of physics.

"When I teach medical students, they're more interested in the rare people who are born with birth defects," says Tabin. "They want to understand embryology so they understand how things go awry, but I'm more interested in the fact that for everyone sitting in my classroom—all 200 of those medical students and dental students—it went right! And every one of them has a heart on the left side and every one of them has two kidneys, and how the heck do you do that?"

By taking steps back through embryos' development, researchers in Mahadevan's and Tabin's laboratories investigated how the guts of several different animals end up as they do. Their findings, published in a recent issue of Science, reveal that the principles guiding the growth of intestinal structures called villi are surprisingly similar across chickens, frogs, mice, and snakes.

These fingerlike villi lie on the inside wall of the gut and are crucial in the uptake of nutrients from food by effectively increasing the absorptive surface area 30-fold.

Researchers in Tabin's lab had noticed a zigzag pattern on the inside of the guts of chick embryos, while collaborating on a project that investigated the coiling of the gut.

"They showed me the picture and I said, 'I know how to explain that,'" recalls Mahadevan, who had studied the cause of such zigzag patterns in shrinking gels in 2005.

Mahadevan's group uses theoretical and experimental approaches to study a variety of problems in science and engineering, with a recent interest in the physical basis of morphogenesis in plants and animals, while Tabin's team has a longstanding interest and expertise in the development of living organisms. Together, the groups designed and carried out experiments and simulations to elucidate exactly what makes the villi turn out the way they do, a process they dubbed "villification."

Previous studies into villi development only looked at the later stages of their growth, which is driven by stem cells in the structures' bases, but by pooling their expertise, the two labs postulated and confirmed that early villus growth is driven not by stem cell generation but by mechanical forces from the different muscle layers of the gut.

"It's as if I had a piece of paper and wet it on one side: the wet region would swell, the dry one would not," says Mahadevan. "This causes the paper to wrinkle. Similarly, when one layer of the gut grows relative to the other, it is compressed and buckles."

The wrinkling of the inner gut, the researchers found, is intimately linked to the stages of muscle layer differentiation, which produce a series of different physical stresses. Co-lead authors Amy Shyer, a graduate student in Tabin's lab, and Tuomas Tallinen, a postdoctoral fellow in Mahadevan's lab, observed that muscle layer differentiation coincided exactly with shifts in the patterns observed in the gut, using computational models of the process that incorporated the gut's experimentally measured geometry and mechanical properties.

By looking across animal models, the labs were even able to specify which muscle layers cause which folding patterns. Some animals, like frogs, keep their zigzag guts until birth because they lack a corresponding muscle layer found in chicks and mice, which allows individual villi to form.

"Now there is a gap," says Tabin. The group's next aim is to explain interim growth, after the individual villi have been formed but before they are entirely dependent on stem cells for their preservation. More knowledge on this force-to-stem-cell transition will lead to broader understanding of other developmental mechanisms that cannot be observed in organisms after birth.

The implications of this work lie in the power of the physical approach to be generalized for organs in other species.

"There's a very simple principle explaining these patterns: how leaves curl, how tendrils form, how the gut forms," says Mahadevan. "They all arise because of differential growth, which leads to shape changes due to geometric incompatibility."

"The people coming from the developmental biology world—the non-mathematical world—were not thinking in terms of physical forces," says Tabin. "Then there was a second world of those who think mechanically, who think about how tubes fold in a biological setting."

Alone, each perspective cannot, for example, fully paint the picture of villus formation, but studies like this help to build bridges across traditional disciplines.



INFORMATION:



The research was supported by the National Institutes of Health (R01 HD047360), a MacArthur Foundation "genius" grant to L. Mahadevan, and a grant from the Finnish National Science Foundation. In addition to his roles at Harvard SEAS and in the departments of physics and organismal and evolutionary biology, Mahadevan is a core faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard and a member of the Kavli Institute for Bionano Science at Technology, which is based at SEAS.

Coauthors included Nandan L. Nerurkar, a research fellow in genetics at HMS; Zhiyan Wei, a graduate student at SEAS; and Eun Seok Gil and David L. Kaplan of Tufts University.



ELSE PRESS RELEASES FROM THIS DATE:

Scientists push closer to understanding mystery of deep earthquakes

2013-09-24
LEMONT, Ill. – Scientists broke new ground in the study of deep earthquakes, a poorly understood phenomenon that occurs where the oceanic lithosphere, driven by tectonics, plunges under continental plates – examples are off the coasts of the western United States, Russia and Japan. This research is a large step toward replicating the full power of these earthquakes to learn what sets them off and how they unleash their violence. It was made possible only by the construction of a one-of-a-kind X-ray facility that can replicate high-pressure and high-temperature while allowing ...

Early imaging, diagnosis of Alzheimer's leads to changes in patient care, better outcomes

2013-09-24
Patients suffering from early symptoms of Alzheimer's disease who were diagnosed sooner than usual using a brain imaging test received Alzheimer-specific medications earlier than those who did not have the brain imaging results available to their doctors or themselves. These patients also had significantly better clinical outcomes during the subsequent years they were clinically monitored, UCLA researchers have found for the first time. The Metabolic Cerebral Imaging in Incipient Dementia study is an ongoing national clinical trial sponsored by the Centers for Medicare ...

UT Arlington researchers successfully test model for implant device reactions

2013-09-24
A team from The University of Texas at Arlington has used mathematical modeling to develop a computer simulation they hope will one day improve the treatment of dangerous reactions to medical implants such as stents, catheters and artificial joints. The work resulted from a National Institutes of Health-funded collaboration by research groups headed by Liping Tang, professor of bioengineering in the UT Arlington College of Engineering, and Jianzhong Su, chairman and professor in the UT Arlington College of Science's mathematics department. Results from their computational ...

Economic rewards of better land management: Estimated 2.3 billion tons of crops worth $1.4 trillion

2013-09-24
Adopting proven sustainable land management practices could raise world crop supplies by an estimated 2.3 billion tonnes, worth $1.4 trillion, experts say in a study being released at a major global desertification conference. Conducted by the international Economics of Land Degradation initiative, the scientific interim report says land's economic value "is chronically undervalued and commonly determined by immediate agricultural or forestry market values." "This focus on short-term gain motivates the highest extraction rates possible from land, leading to unsustainable ...

JCI early table of contents for Sept. 24, 2013

2013-09-24
Hereditary spastic paraplegia development associated with changes in endoplasmic reticulum Hereditary spastic paraplegias (HSP) are a group of hereditary diseases that result in progressive loss of motor function in the lower limbs, and mutations in many different genes have been implicated in disease progression. One common feature of HSP is the progressive degradation of the axons of cortical motor neurons; however, it is not fully understood how mutations in is so many different genes result in axonal degradation. In this issue of the Journal of Clinical Investigation, ...

Hereditary spastic paraplegia development associated with changes in endoplasmic reticulum

2013-09-24
Hereditary spastic paraplegias (HSP) are a group of hereditary diseases that result in progressive loss of motor function in the lower limbs, and mutations in many different genes have been implicated in disease progression. One common feature of HSP is the progressive degradation of the axons of cortical motor neurons; however, it is not fully understood how mutations in is so many different genes result in axonal degradation. In this issue of the Journal of Clinical Investigation, Christian Hübner and colleagues at Jena University develop a mouse model of HSP by introducing ...

Maintaining fluid and electrolyte balance in the kidney

2013-09-24
Distal renal tubular acidosis (dRTA) develops in response to the loss of acid secretion by α-intercalated cells in the kidney. The inability to remove acid from the body results in low blood potassium levels (hypokalemia), dehydration, and excess calcium in the urine (hypercalcemia), which leads to urinary stone formation. Recently, patients with dRTA have been identified with genetic mutations that lead to the inactivation of proton pumps found in β-intercalated cells, which have been thought to be responsible for base-secretion in the kidney. In this issue ...

Development of autoimmunity in patients with common variable immune deficiency

2013-09-24
Common variable immune deficiency (CVID) is a genetic disease associated with enhanced susceptibility to infection, autoimmunity, and decreased antibody production. Mutations in the tumor necrosis factor receptor superfamily member TACI, are associated with CVID and autoimmunity development. Interestingly, autoimmunity develops in CVID patients with only one mutated copy of TACI, and CVID patients with two mutated TACI alleles do not develop autoimmunity. In this issue of the Journal of Clinical Investigation, Eric Meffre and colleagues at Yale University evaluated B ...

A link between zinc transport and diabetes

2013-09-24
Individuals with a mutation in the gene encoding a zinc transporter, SLC30A8 have an elevated risk of developing type 2 diabetes. Insulin granules that are released from pancreatic β cells contain high levels of zinc; however, it is not clear why individuals with mutations in the SLC30A8 zinc transporter gene are predisposed to type 2 diabetes. In this issue of the Journal of Clinical Investigation, Yoshio Fujitani and colleagues at Juntendo University investigated the role of zinc transport by SLC30A8 in β cells. They found that this zinc transporter is required ...

Northern moths may fare better under climate warming than expected

2013-09-24
Moths in northern Finland are less susceptible to rising temperatures than expected, suggesting high latitude moth populations around the world may be partly buffered from the effects of rapid climate warming, according to a new Dartmouth-Finnish study based on the most extensive analyses yet conducted of seasonal patterns in forest animals. The results are important because moths are a key food source for birds, bats and many other predators, and (in their caterpillar stage) are one of the planet's most abundant plant-eating animals and most voracious agricultural pests. ...

LAST 30 PRESS RELEASES:

Study tracks chromium chemistry in irradiated molten salts

Scientists: the beautiful game is a silver bullet for global health

Being physically active, even just a couple of days a week, may be key to better health

High-fat diet promote breast cancer metastasis in animal models

A router for photons

Nurses and AI collaborate to save lives, reduce hospital stays

Multi-resistance in bacteria predicted by AI model

Tinker Tots: A citizen science project to explore ethical dilemmas in embryo selection

Sensing sickness

Cost to build multifamily housing in California more than twice as high as in Texas

Program takes aim at drinking, unsafe sex, and sexual assault on college campuses

Inability to pay for healthcare reaches record high in U.S.

Science ‘storytelling’ urgently needed amid climate and biodiversity crisis

KAIST Develops Retinal Therapy to Restore Lost Vision​

Adipocyte-hepatocyte signaling mechanism uncovered in endoplasmic reticulum stress response

Mammals were adapting from life in the trees to living on the ground before dinosaur-killing asteroid

Low LDL cholesterol levels linked to reduced risk of dementia

Thickening of the eye’s retina associated with greater risk and severity of postoperative delirium in older patients

Almost one in ten people surveyed report having been harmed by the NHS in the last three years

Enhancing light control with complex frequency excitations

New research finds novel drug target for acute myeloid leukemia, bringing hope for cancer patients

New insight into factors associated with a common disease among dogs and humans

Illuminating single atoms for sustainable propylene production

New study finds Rocky Mountain snow contamination

Study examines lactation in critically ill patients

UVA Engineering Dean Jennifer West earns AIMBE’s 2025 Pierre Galletti Award

Doubling down on metasurfaces

New Cedars-Sinai study shows how specialized diet can improve gut disorders

Making moves and hitting the breaks: Owl journeys surprise researchers in western Montana

PKU Scientists simulate the origin and evolution of the North Atlantic Oscillation

[Press-News.org] How the gut got its villi
Comparing species, researchers at Harvard SEAS and Harvard Medical School investigate a process they dub 'villification'