(Press-News.org) One of the thinnest membranes ever made is also highly discriminating when it comes to the molecules going through it. Engineers at the University of South Carolina have constructed a graphene oxide membrane less than 2 nanometers thick with high permeation selectivity between hydrogen and carbon dioxide gas molecules.
The selectivity is based on molecular size, the team reported in the journal Science. Hydrogen and helium pass relatively easily through the membrane, but carbon dioxide, oxygen, nitrogen, carbon monoxide and methane permeate much more slowly.
"The hydrogen kinetic diameter is 0.289 nm, and carbon dioxide is 0.33 nm. The difference in size is very small, only 0.04 nm, but the difference in permeation is quite large" said Miao Yu, a chemical engineer in USC's College of Engineering and Computing who led the research team. "The membrane behaves like a sieve. Bigger molecules cannot go through, but smaller molecules can."
In addition to selectivity, what's remarkable about the USC team's result is the quality of the membrane they were able to craft on such a small scale. The membrane is constructed on the surface of a porous aluminum oxide support. Flakes of graphene oxide, with widths on the order of 500 nm but just one carbon atom thick, were deposited on the support to create a circular membrane about 2 square centimeters in area.
The membrane is something of an overlapping mosaic of graphene oxide flakes. It's like covering the surface of a table with playing cards. And doing that on a molecular scale is very hard if you want uniform coverage and no places where you might get "leaks." Gas molecules are looking for holes anywhere they can be found, and in a membrane made up of graphene oxide flakes, there would be two likely places: holes within the flakes, or holes between the flakes.
It's the spaces between flakes that have been a real obstacle to progress in light gas separations. That's why microporous membranes designed to distinguish in this molecular range have typically been very thick. "At least 20 nm, and usually thicker," said Miao. Anything thinner and the gas molecules could readily find their way between non-uniform spaces between flakes.
Miao's team devised a method of preparing a membrane without those "inter-flake" leaks. They dispersed graphene oxide flakes, which are highly heterogeneous mixtures when prepared with current methods, in water and used sonication and centrifugation techniques to prepare a dilute, homogeneous slurry. These flakes were then laid down on the support by simple filtration.
Their thinnest result was a 1.8-nm-thick membrane that only allowed gas molecules to pass through holes in the graphene oxide flakes themselves, the team reported. They found by atomic force microscopy that a single graphene oxide flake had a thickness of approximately 0.7 nm. Thus, the 1.8-nm-thick membrane on aluminum oxide is only a few molecular layers thick, with molecular defects within the graphene oxide that are essentially uniform and just a little too small to let carbon dioxide through easily.
The advance has a range of potential applications. With widespread concerns about carbon dioxide as a greenhouse gas, the efficient separation of carbon dioxide from other gases is a high research priority. Moreover, hydrogen represents an integral commodity in energy systems involving, for example, fuel cells, so purifying it from gas mixtures is also an active area of interest.
Yu also notes that the dimensions of the molecular sieve are on the order of the size of water, so, for example, purifying the copious amounts of tainted water produced by hydraulic fracturing (fracking) is another possibility.
Being able to reduce membrane thickness – and by an order of magnitude – is a big step forward, Yu said. "Having membranes so thin is a big advantage in separation technology," he said. "It represents a completely new type of membrane in the separation sciences."
INFORMATION: END
NEW BRUNSWICK, N.J. – A new way to attack flu viruses is taking shape in laboratories at Rutgers University, where scientists have identified chemical agents that block the virus's ability to replicate itself in cell culture.
These novel compounds show promise for a new class of antiviral medicines to fight much-feared pandemic influenzas such as the looming "bird flu" threats caused by the H5N1 influenza A virus and the new H7N9 virus responsible for a 2013 outbreak in China.
Timely production of a vaccine is difficult when a pandemic flu strikes. A viable alternative ...
HOUSTON, TX—October 2, 2013—Study findings published in the October issue of Cornea show that daily dietary supplementation with a unique combination of omega fatty acids (GLA, EPA and DHA) for six months is effective in improving ocular irritation symptoms and halting the progression of inflammation that characterizes moderate to severe dry eye.
The multi-center, double-blind, randomized, placebo-controlled clinical trial evaluated 38 post-menopausal women with tear dysfunction in both eyes. HydroEye® (ScienceBased Health®) was found to improve ocular irritation symptoms, ...
When something we do produces a positive result, we actually perceive it differently than we would if that same action yielded a negative result. In particular, people feel a greater connection between voluntary actions and their outcomes if those outcomes are good than if they are bad. The discovery, reported on October 3 in Current Biology, a Cell Press publication, yields important insight into notions about personal responsibility.
"Our result suggests that people may really experience less responsibility for negative than for positive outcomes," says Patrick Haggard ...
The stresses that come with aging, chemotherapy treatments, and environmental exposures all threaten fertility. But what if there were a way to preserve women's limited egg supply? Researchers reporting on studies conducted in frog and mouse eggs in the Cell Press journal Molecular Cell on October 3rd may have found a way.
The findings come at an important time when many women are waiting longer and longer to have children, renewing interest in the development of strategies to preserve oocytes—immature egg cells.
"Our work provides insight into how oocyte viability ...
The ability to make induced pluripotent stem cells (iPSCs) from mature cells in the body holds great potential for improved drug screening, disease modeling, and medical treatments for numerous conditions. Establishing well-characterized panels of iPSC lines that reflect the diversity of the human population and include samples from patients with a wide range of diseases will be key to tapping into the potential of iPSCs. In the October 3 issue of the Cell Press journal Cell Stem Cell, leading experts in the field publish several opinion pieces on emerging issues related ...
Autophagy, a key cellular auto-cleaning mechanism, mediates the formation of amyloid beta plaques, one of the hallmarks of Alzheimer's disease. It might be a potential drug target for the treatment of the disease, concludes new research from the RIKEN Brain Science Institute in Japan. The study sheds light on the metabolism of amyloid beta, and its role in neurodegeneration and memory loss.
In a study published today in the journal Cell Reports, Drs. Per Nilsson, Takaomi Saido and their team show for the first time using transgenic mice that a lack of autophagy in neurons ...
Wealth inequality can encourage people to cooperate when they would otherwise have no incentive to do so, according to a new study published in Nature Communications.
"In many groups and societies, the temptation to defect is high, which means that cheaters are much better off than cooperators," says IIASA researcher Ulf Dieckmann, who worked on the study along with IIASA researcher Ádám Kun. For example, he says, if a train ticket is very expensive and the probability that cheaters are caught is low, people will be tempted to free-ride without purchasing a ticket. Likewise, ...
Cold Spring Harbor, NY -- A multidisciplinary team led by a geneticist and psychiatrist from Cold Spring Harbor Laboratory's (CSHL) Stanley Institute for Cognitive Genomics today publish a paper providing a glimpse of both the tremendous power and the current limitations of what is sometimes called "precision medicine."
Precision medicine is an approach to diagnosis and treatment that tailors therapeutic care to individuals in a highly specific manner, and which brings to bear powerful new technologies that have not yet made it into the mainstream of clinical medicine, ...
Exposure to common air pollutants found in diesel exhaust pollution can affect the ability of honeybees to recognise floral odours, new University of Southampton research shows.
Honeybees use floral odours to help locate, identify and recognise the flowers from which they forage.
The Southampton team, led by Dr Tracey Newman and Professor Guy Poppy, found that diesel exhaust fumes change the profile of flora odour. They say that these changes may affect honeybees' foraging efficiency and, ultimately, could affect pollination and thus global food security.
Published ...
Boston, MA – For decades, there has been a significant effort led by the Centers for Disease Control and Prevention and others to reduce inappropriate antibiotic prescribing. Despite this work, new research from Brigham and Women's Hospital (BWH) finds only incremental improvement in antibiotic prescribing for adults with acute bronchitis and sore throat. These findings were presented at IDWeek on October 3, 2013 and the sore throat data was published online in JAMA Internal Medicine.
"We know that antibiotic prescribing, particularly to patients who are not likely ...