(Press-News.org) The San Diego Supercomputer Center (SDSC) at the University of California, San Diego, has been awarded a $12-million grant from the National Science Foundation (NSF) to deploy Comet, a new petascale supercomputer designed to transform advanced scientific computing by expanding access and capacity among traditional as well as non-traditional research domains. Comet will be capable of an overall peak performance of nearly two petaflops, or two quadrillion operations per second.
"Supercomputers such as Comet and our data-intensive Gordon system are helping to fulfill the NSF's goal to extend the impact of advanced computational resources to a larger and more diversified user base," said UC San Diego Chancellor Pradeep K. Khosla. "Our San Diego Supercomputer Center is a key resource for our university system and has had a long track-record of leadership in high-performance computers and data-intensive computing."
While science domains such as physics, astronomy, and the earth sciences have long relied on at-scale high-performance computing (HPC) to help them create detailed simulations to accelerate discovery, there is a growing need for computing capacity for a broader set of researchers, including those in non-traditional domains such as genomics, the social sciences, and economics.
Computing for the 99 Percent
"Comet is designed to be part of an emerging cyberinfrastructure for what is called the 'long tail' of science, which encompasses the idea that a large number of modest-sized computationally based research projects still represents, in aggregate, a tremendous amount of research and scientific impact," said Sandra A. Brown, Vice Chancellor for Research at UC San Diego.
"Comet is all about computing for the 99 percent," said SDSC Director Michael Norman, the project's principal investigator. "As the world's first virtualized HPC cluster, it is designed to deliver a significantly increased level of computing capacity and customizability to support data-enabled science and engineering at the campus, regional, and national levels, and in turn support the entire science and engineering enterprise, including education as well as research."
Comet will join SDSC's Gordon supercomputer as a key resource within NSF's Extreme Science and Engineering Discovery Environment (XSEDE), which comprises the most advanced collection of integrated digital resources and services in the world. It is expected that Comet will help meet the pent-up demand for computing on up to 1,024 cores, which accounts for 98% of current jobs among XSEDE users. While Comet will be able to support much larger jobs, its scheduling policies will be designed to provide fast turnaround for large numbers of smaller jobs.
Comet will also be the first XSEDE production system to support high-performance virtualization. SDSC team members plan to work closely with communities and enable them to develop the customized software stacks that meet their needs by defining virtual clusters. With significant advances in Single Root IO Virtualization (SRIOV), virtual clusters will be able to attain near native hardware performance in both InfiniBand latency and bandwidth, making them suitable for MPI-style parallel computing.
"We are supporting Comet to provide a resource not just for the highest end-users, but for scientists and engineers across a broad spectrum of disciplines," said Barry Schneider, program director for Comet in NSF's Division of Advanced Cyberinfrastructure. "This so-called long tail of science is discovering the power of advanced digital resources. In this way, Comet complements other NSF resources such as Blue Waters and Stampede, which were designed primarily to provide power users with the ability to perform large-scale computations."
Petascale Power
Scheduled to start operations in early 2015, Comet will be a Dell-based cluster based on next-generation Intel Xeon processors. Each node will be equipped with two of those processors, 128 GB (gigabytes) of traditional DRAM, and 320 GB of flash memory. Since Comet is designed to optimize capacity for modest-scale jobs, each rack of 72 nodes will have a full bisection InfiniBand FDR interconnect, with a 4:1 bisection interconnect across the racks.
"Dell was ecstatic to partner with SDSC on this particular National Science Foundation proposal," said Tim Carroll, Executive Director of Dell Research Computing Solutions. "UC San Diego has a rich history of providing breakthrough technology to the broadest base of researchers possible. At Dell we are committed to the very same mission, so the collaboration was intuitive. We are proud to deliver this solution to the research community and to be part of the next generation of breakthroughs."
"When you look inside Comet, the key enabling computing capability will be the Intel Xeon processors," said Mark Seager, Chief Technology Officer for the High Performance Computing Ecosystem at Intel. "These new processors will deliver significant performance improvements to the NSF's general-purpose scientific workload, or the 99 percent, with a robust set of virtualization features that enable a broad spectrum of high-performance applications in a large memory, virtualized environment."
In addition, Comet will include some large-memory nodes, each with 1.5 TB of memory, as well as nodes with NVIDIA GPUs (graphic processing units). The GPU and large-memory nodes will target specific applications, such as visualization, molecular dynamics simulations or de novo genome assembly.
Comet users will also have access to 7 PB (petabytes) of Lustre-based high-performance storage, as well as 6 PB of durable storage for data reliability, both based on an evolution of SDSC's Data Oasis storage system. UC San Diego and SDSC are also deploying new 100 Gbps (Gigabit per second) connectivity, allowing users to rapidly move data to SDSC for analysis and data sharing, and return data to their institutions for local use.
Comet will be the successor to SDSC's Trestles computer cluster, to be retired in 2014 after four years of service.
"Comet will have all of the features that made Trestles so popular with users, but with much more capacity and ease-of-access," said SDSC Deputy Director Richard Moore, a co-PI of the Comet project. "Comet will be particularly well-suited to science gateways that serve large communities of users, especially those new to XSEDE."
Norman and Moore are joined by three co-principal investigators from SDSC on the Comet project: SDSC Associate Director and XSEDE co-PI Nancy Wilkins-Diehr; SDSC Distinguished Scientist Chaitan Baru; and SDSC Chief Technical Officer Philip Papadopoulos. Geoffrey Fox, Distinguished Professor of Computer Science and Informatics at Indiana University and PI of the NSF's FutureGrid project, is a strategic partner for the project.
The Comet project is funded under NSF grant number ACI 1341698.
### END
NSF awards $12 million to SDSC to deploy 'Comet' supercomputer
2013-10-04
ELSE PRESS RELEASES FROM THIS DATE:
New kind of microscope uses neutrons
2013-10-04
CAMBRIDGE, MA -- Researchers at MIT, working with partners at NASA, have developed a new concept for a microscope that would use neutrons — subatomic particles with no electrical charge — instead of beams of light or electrons to create high-resolution images.
Among other features, neutron-based instruments have the ability to probe inside metal objects — such as fuel cells, batteries, and engines, even when in use — to learn details of their internal structure. Neutron instruments are also uniquely sensitive to magnetic properties and to lighter elements that are important ...
Reading literary fiction improves 'mind-reading' skills
2013-10-04
NEW YORK (October 3, 2013)—Heated debates about the quantifiable value of arts and literature are a common feature of American social discourse. Now, two researchers from The New School for Social Research have published a paper in Science demonstrating that reading literary fiction enhances a set of skills and thought processes fundamental to complex social relationships—and functional societies.
Ph.D. candidate David Comer Kidd and his advisor, professor of psychology Emanuele Castano performed five experiments to measure the effect of reading literary fiction on participants' ...
Analysis of little-explored regions of genome reveals dozens of potential cancer triggers
2013-10-04
A massive data analysis of natural genetic variants in humans and variants in cancer tumors has implicated dozens of mutations in the development of breast and prostate cancer, a Yale-led team has found.
The newly discovered mutations are in regions of DNA that do not code for proteins but instead influence activity of other genes. These areas represent an unexplored world that will allow researchers and doctors to gain new insight into the causes and treatment of cancer, said the scientists.
"This allows us to take a systematic approach to cancer genomics," said Mark ...
A question of style
2013-10-04
This news release is available in German. Most molecules occur in several shapes, which may behave very differently. Using a sorting machine for molecules, a German–Swiss research team can now for the first time directly measure the various reaction rates of different forms of the same compound. The team, led by DESY scientist Prof. Jochen Küpper from the Hamburg Center for Free-Electron Laser Science CFEL and Prof. Stefan Willitsch from the University of Basel, presents its work in the US journal "Science". CFEL is a collaboration of DESY, the University of Hamburg ...
NIST physicists 'entangle' microscopic drum's beat with electrical signals
2013-10-04
BOULDER, Colo -- Extending evidence of quantum behavior farther into the large-scale world of everyday life, physicists at the National Institute of Standards and Technology (NIST) have "entangled"—linked the properties of—a microscopic mechanical drum with electrical signals.
The results confirm that NIST's micro-drum could be used as a quantum memory in future quantum computers, which would harness the rules of quantum physics to solve important problems that are intractable today. The work also marks the first-ever entanglement of a macroscopic oscillator, expanding ...
Study makes important step-forward in mission to tackle parasitic worm infections
2013-10-04
Researchers from The Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester have made an important step forward in finding a potential treatment for an infection that affects over a billion people worldwide.
Gastrointestinal parasitic infections, which are worm infections in the intestine, affect nearly one quarter of the world population and have been heavily linked with poverty in poorer regions.
They normally result in a chronic, long-lived infection associated with poor quality of life and health problems.
A team led by Dr Mark ...
Facebook and Twitter may yield clues to preventing the spread of disease
2013-10-04
WATERLOO, Ont. (Thursday, October 3, 2013) -- Facebook and Twitter could provide vital clues to control infectious diseases by using mathematical models to understand how we respond socially to biological contagions.
Cold and flu season prompts society to find ways to prevent the spread of disease though measures like vaccination all the way through to covering our mouths when we cough and staying in bed. These social responses are much more difficult to predict than the way biological contagion will evolve, but new methods are being developed to do just that.
Published ...
BMC pediatricians warn that cuts to SNAP program will harm children
2013-10-04
(Boston)--In a commentary in this week's issue of Lancet, pediatricians from Boston Medical Center (BMC) call the Supplemental Nutrition Assistance Program (SNAP, formerly the Food Stamp Program), one of America's most cost-effective and successful public health programs in the country. According to the authors, not only does it make life much better for children and families, it also saves society money. Unfortunately they also point out that despite convincing evidence of the beneficial effects of SNAP on child health, legislators have targeted SNAP for cuts as they struggle ...
Neglect of 'science communication environment' puts vaccine acceptance at risk
2013-10-04
The biggest threat to the contribution that childhood vaccines make to societal well-being doesn't come from deficits in public comprehension, distrust of science, or misinformation campaigns, but rather from the failure of governmental and other institutions to use evidence-based strategies to anticipate and avoid recurring threats to the science communication environment—the myriad everyday channels through which the public becomes apprised of decision-relevant science.
This is the thesis of an article published this week in Science magazine by Dan M. Kahan, Elizabeth ...
New technique identifies novel class of cancer's drivers
2013-10-04
Researchers can now identify DNA regions within non-coding DNA, the major part of the genome that is not translated into a protein, where mutations can cause diseases such as cancer.
Their approach reveals many potential genetic variants within non-coding DNA that drive the development of a variety of different cancers. This approach has great potential to find other disease-causing variants.
Unlike the coding region of the genome where our 23,000 protein-coding genes lie, the non-coding region - which makes up 98% of our genome – is poorly understood. Recent studies ...