PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Blood vessel cells can repair, regenerate organs, say Weill Cornell scientists

2 studies suggest infusion of these cells may contribute to organ regeneration in the future

2013-10-09
(Press-News.org) NEW YORK (October 8, 2013) -- Damaged or diseased organs may someday be healed with an injection of blood vessel cells, eliminating the need for donated organs and transplants, according to scientists at Weill Cornell Medical College.

In studies appearing in recent issues of Stem Cell Journal and Developmental Cell, the researchers show that endothelial cells -- the cells that make up the structure of blood vessels -- are powerful biological machines that drive regeneration in organ tissues by releasing beneficial, organ-specific molecules.

They discovered this by decoding the entirety of active genes in endothelial cells, revealing hundreds of known genes that had never been associated with these cells. The researchers also found that organs dictate the structure and function of their own blood vessels, including the repair molecules they secrete.

Together, the studies show that endothelial cells and the organs they are transplanted into work together to repair damage and restore function, says the study's lead investigator, Shahin Rafii, M.D., a professor of genetic medicine and co-director of the medical college's Ansary Stem Cell Institute and Tri-SCI Stem Center. When an organ is injured, its blood vessels may not be able to repair the damage on their own because they may themselves be harmed or inflamed, says Dr. Rafii, who is also an investigator at the Howard Hughes Medical Institute.

"Our work suggests that that an infusion of engineered endothelial cells could engraft into injured tissue and acquire the capacity to repair the organ," he says. "These studies -- along with the first molecular atlas of organ-specific blood vessel cells reported in the Developmental Cell paper-- will open up a whole new chapter in translational vascular medicine and will have major therapeutic application.

"Scientists had thought blood vessels in each organ are the same, that they exist to deliver oxygen and nutrients. But they are very different," and each organ is endowed with blood vessels with unique shape and function and delegated with the difficult task of complying with the metabolic demands of that organ, Dr. Rafii adds.

Creating an endothelial cell genetic 'atlas'

In the Developmental Cell study, the research team examined nine different tissues at homeostasis -- a steady, healthy state -- as well as liver and bone marrow recovering from a traumatic injury.

The scientists developed technology that helped them obtain "a pure population of endothelial cells in a very rapid time frame," says the study's lead author, Dr. Daniel Nolan, a senior scientist in Dr. Rafii's laboratory during this study who became an employee of Angiocrine Bioscience after it was completed. AB is housed at Weill Cornell Medical College and founded on various technologies based on Dr. Rafii's work.

From these cells, they were able to take a snapshot of all the genes that are being expressed in the various populations of endothelial cells known as vascular beds.

They found that endothelial cells possess tissue-specific genes that code for unique growth factors, adhesion molecules, and factors regulating metabolism. "We knew that these gene products were critical to the health of a particular tissue, but before our study it was not appreciated that these factors originate in the endothelial cells," Dr. Nolan says.

"We also found that the healing, or regeneration of tissue, in the liver and in the bone marrow were unexpectedly different -- including the repair molecules, known as angiocrine growth factors, that were expressed by the endothelial cells," says Dr. Olivier Elemento, who performed the complex computational calculations for the studies.

Blood vessels differ among various organs because the endothelial cells have to constantly adapt to the metabolic, biomechanical, inflammatory and immunological needs of that particular organ, says Dr. Michael Ginsberg, a senior postdoctoral associate in Dr. Rafii's laboratory during this study. Ginsberg also became an employee of Angiocrine Bioscience after the study ended. "And we have now found how endothelial cells have learned to behave differently in each organ and adjust to the needs of those organs," he says.

These findings raise the question as to how endothelial cells have the capacity to adapt to the biological demands of each organ. Is it possible to design "immature" endothelial cells that could allow scientists to identify the means by which the microenvironmental cues educate them to become more specialized endothelial cells?

"Versatile endothelial cells" for organ therapy

To address this issue, the scientists postulated that endothelial cells derived from embryonic stem cells could behave as resilient endothelial cells, being able to be taught how to act like an organ-specific blood vessel. Indeed, in the Stem Cell Journal study, the team generated endothelial cells from mouse embryonic stem cells that were functional, transplantable and responsive to microenvironmental signals.

These embryonic-derived endothelial cells "are versatile, so they can be transplanted into different tissues, become educated by the tissue, and acquire the characteristics of the native endothelial cells," says the study's senior author, Dr. Sina Rabbany, an adjunct associate professor of genetic medicine and bioengineering in medicine at Weill Cornell Medical College.

Dr. Rabbany says researchers can propagate these cells in large numbers in the laboratory. "We now know what it takes to keep these cells healthy, stable and viable for transplantation," he says.

In fact, in the Developmental Cell study, the researchers transplanted these generic endothelial cells generated by Dr. Rabbany's team into the liver of a mouse and found that it became indistinguishable from native endothelial cells. This also occurred when cells were grafted into kidneys. "These naive endothelial cells acquire the phenotype -- the molecular profile and signature -- of the native pre-existing endothelial cells due to the unique microenvironment in the organ," Dr. Ginsberg says.

"These transplanted endothelial cells are being educated by the unique biophysical mincroenvironment organ in which they are placed. They morph into endothelial cells that belong in the organ, and that can repair it," he adds. "If you have a heart injury and you need to reform some of your cardiomyocytes, the endothelial cells that are around the heart secrete factors that are specific for helping a heart repair itself," Dr. Rabbany says.

However, to translate these studies to the clinical setting the scientists have to generate endothelial cells that have similar immune constitution –"immunocompatible" with the recipient patient. "Endothelial cells could be derived from human embryonic pluripotent stem cells as well as by somatic cell nuclear transfer (SCNT)," says Dr. Zev Rosenwaks, director and physician-in-chief of the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and director of the Stem Cell Derivation Laboratory of Weill Cornell Medical College and a co-author on the studies. "In the SCNT approach, the nucleus of a somatic cell is introduced into the human egg resulting in the generation of embryonic stem cells that would generate endothelial cells that are a genetic match of the patient," says Dr. Daylon James, assistant professor of reproductive biology at Weill Cornell, who was instrumental in designing protocols to generate endothelial cells from human embryonic stem cells.

"Alternatively, to overcome the bioethical issues associated with human embryos or eggs and potential predisposition of the embryonic stem cells to produce cancer cells, one can take cells discarded after a diagnostic prenatal amniocentesis and turn them into endothelial cells capable of repairing and regenerating blood vessels. Freezing and stockpiling such cells will allow transplantation of these cells to a genetically diverse population of patients," adds Dr. Rosenwaks, referring to work published last October in the journal Cell. Ginsberg is an inventor on this technology, which Angiocrine has licensed.

Additional preclinical investigation is required before study of endothelial cell transplantation in humans is possible, but the therapeutic potential of endothelial cell transplantation is endless, Dr. Rafii says. "They could also be used as Trojan horses to block tumor growth, they could be altered to carry toxic chemicals. They could become biological cruise missiles, directed to do many things inside diseased organs," he says. "Our work has just begun."

###

The Stem Cell Journal and Developmental Cell studies were funded by the Ansary Stem Cell Institute, the Howard Hughes Medical Institute, the Empire State Stem Cell Board, the New York State Department of Health (NYSTEM C024180, C026438, and C026878), the National Institutes of Health (R01s HL097797 and DK095039), the Qatar National Priorities Research Foundation (NPRP08-663-3-140), and the Qatar Foundation BioMedical Research Program (BMRP).

Dr. Rafii, Dr. Nolan, Dr. Ginsberg, and Dr. Rabbany were authors on both studies, as were Dr. Edo Israely, Dr. Bi-Sen Ding, Dr. Daylon James and Dr. Oliver Elemento, all from Weill Cornell Medical College.

Additionally, Brisa Palikuqi, Michael G. Poulos, William Schachterle,Ying Liu, Zev Rosenwaks, Jason M. Butler, Jenny Xiang, Arash Rafii and Koji Shido, all from Weill Cornell Medical College, participated in the Developmental Cell study.

Ginsberg and Nolan received salary support from Angiocrine Biosciences after becoming employees. The Weill Cornell Center for Technology Enterprise and Commercialization has filed a patent application on inventions emanating from the material covered in the Developmental Cell paper and that Ginsberg and Nolan are inventors on.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.

Office of External Affairs
Weill Cornell Medical College

tel: 646.317.7401
email: pr@med.cornell.edu

Follow WCMC on Twitter and Facebook

END



ELSE PRESS RELEASES FROM THIS DATE:

From slowdown to shutdown -- US leadership in biomedical research takes a blow, says ASCB

2013-10-09
WASHINGTON, DC—OCTOBER 8, 2013—A senior researcher who can't get an answer from a shutdown NIH about a proposed clinical trial on a neurodegenerative disease, a Nobel Prize-winning scientist who fears that a generation of innovators will be lost, and a young investigator wearied at the lab by endless funding cuts and frustrated at home by the halt to promising research into a genetic disorder that affects her daughter—these are the leaders and members of the American Society for Cell Biology (ASCB) who today told a press conference at the National Press Club that the "temporary" ...

EARTH Magazine: New subduction zone may close Atlantic Ocean

2013-10-09
Alexandria, VA –Throughout the history of Earth, supercontinents have formed and ocean basins have opened and closed over timescales of 300 million to 500 million years. But scientists haven't found direct evidence of the in-between phase — an ocean basin that was opening, starting instead to close — until now. Thanks to new high-resolution surveys of the seafloor, scientists think they have evidence of that process starting in the Atlantic Ocean off the coast of Portugal. If they are right, this nascent subduction zone could close the Atlantic Ocean — in roughly 200 million ...

Researchers identify screening tool for detecting intimate partner violence among women veterans

2013-10-09
(Boston)-- Boston University School of Medicine (BUSM) researchers have identified a promising screening tool to detect intimate partner violence (IPV) in females in the VA Boston Healthcare System. The findings, which appear in the current issue of Journal of General Internal Medicine, accurately detected 78 percent of women identified as abused within the past year by a more comprehensive and behaviorally specific scale. IPV is a major public health issue, particularly among women receiving medical care at VA facilities. The researchers cite "lifetime reports of IPV ...

New urine test could diagnose eye disease

2013-10-09
DURHAM, N.C. -- You might not think to look to a urine test to diagnose an eye disease. But a new Duke University study says it can link what is in a patient's urine to gene mutations that cause retinitis pigmentosa, or RP, an inherited, degenerative disease that results in severe vision impairment and often blindness. The findings appear online in the Journal of Lipid Research. "My collaborators, Dr. Rong Wen and Dr. Byron Lam at the Bascom Palmer Eye Institute in Florida first sought my expertise in mass spectrometry to analyze cells cultured from a family in which ...

Diamond 'super-earth' may not be quite as precious, UA graduate student finds

2013-10-09
A planet 40 light years from our solar system, believed to be the first-ever discovered planet to consist largely of diamond, may in fact be of less exquisite nature, according to new research led by University of Arizona astronomy graduate student Johanna Teske. Revisiting public data from previous telescope observations, Teske's team analyzed the available data in more detail and concluded that carbon – the chemical element diamonds are made of – appears to be less abundant in relation to oxygen in the planet's host star – and by extension, perhaps the planet – than ...

Harvard Stem Cell Institute publishes first clinical trial results

2013-10-09
Starting with a discovery in zebrafish in 2007, Harvard Stem Cell Institute (HSCI) researchers have published initial results of a Phase Ib human clinical trial of a therapeutic that has the potential to improve the success of blood stem cell transplantation. This marks the first time, just nine short years after Harvard's major commitment to stem cell biology, that investigators have carried a discovery from the lab bench to the clinic—fulfilling the promise on which HSCI was founded. The Phase 1b safety study, published in the journal Blood, included 12 adult patients ...

A better breathalyzer

2013-10-09
The portable breathalyzers preferred by roadside police use expensive electronic readouts, but these devices lack the "immediate and intuitive" color change that tells police whether the alcohol content of a suspect's breath puts them in the legal red zone, said first author Riccardo Pernice of the Università degli Studi di Palermo in Italy. Techniques that do use color change to assess the level of alcohol concentration are typically less expensive, but they cannot give a precise reading of the alcohol concentration and most are use-once-and-toss. Pernice said his team's ...

Flawed diamonds: Gems for new technology

2013-10-09
A team of researchers led by University of Arizona assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds that contain nitrogen-vacancy centers – defects in which two adjacent carbon atoms in the diamond's crystal structure are replaced by a single nitrogen atom and an empty gap. These "flaws" result in unexpected and attractive properties that have put such diamonds in the spotlight as promising candidates for a variety of technological advances. The findings, published online in Nature Physics, could help ...

Where does dizziness come from?

2013-10-09
Johns Hopkins researchers say they have pinpointed a site in a highly developed area of the human brain that plays an important role in the subconscious recognition of which way is straight up and which way is down. The finding, described online in the journal Cerebral Cortex, may help account for some causes of spatial disorientation and dizziness, and offer targets for treating the feelings of unsteadiness and "floating" people experience when the brain fails to properly integrate input from the body's senses. Disabling dizziness can be a symptom of damage to the ...

Market and demographic factors in forming ACOs

2013-10-09
LEBANON, NH, Oct. 8, 2013 – Accountable care organizations are rapidly being formed with the implementation of the Affordable Care Act, and they are being established in areas where it may be easier to meet quality and cost targets, researchers at The Dartmouth Institute for Health Policy & Clinical Practice said in a study published in the journal Health Services Research. An accountable care organization is a group of providers collectively held responsible for the overall cost and quality of care for a defined patient. ACOs and other value-based payment reforms are ...

LAST 30 PRESS RELEASES:

Team of Prof. Woo Young Jang Department of Orthopedic Surgery, KU Anam Hospital wins the Best Paper Award from the Korean Musculoskeletal Tumor Society

Terasaki Institute for Biomedical Innovation announces recipients of inaugural Keith Terasaki Mid-Career Innovation Award

The impact of liver graft preservation method on longitudinal gut microbiome changes following liver transplant

Cardiovascular health risks continue to grow within Black communities, action needed

ALS survival may be cut short by living in disadvantaged communities

No quantum exorcism for Maxwell's demon (but it doesn't need one)

Balancing the pressure: How plant cells protect their vacuoles

Electronic reporting of symptoms by cancer patients can improve quality of life and reduce emergency visits

DNA barcodes and citizen science images map spread of biocontrol agent for control of major invasive shrub

Pregnancy complications linked to cardiovascular disease in the family

Pancreatic cancer immune map provides clues for precision treatment targeting

How neighborhood perception affects housing rents: A novel analytical approach

Many adults report inaccurate beliefs about risks and benefits of home firearm access

Air pollution impacts an aging society

UC Davis researchers achieve total synthesis of ibogaine

Building better biomaterials for cancer treatments

Brain stimulation did not improve impaired motor skills after stroke

Some species of baleen whales avoid attracting killer whales by singing too low to be heard

Wasteful tests before surgery: Study shows how to reduce them safely

UCalgary researchers confirm best approach for stroke in medium-sized blood vessels

Nationwide, 34 local schools win NFL PLAY 60 grants to help students move more

New software developed at Wayne State University will help study chemical and biological systems

uOttawa study unveils new insights into how neural stem cells are activated in the adult human brain

Cystic fibrosis damages the immune system early on

Novel ‘living’ biomaterial aims to advance regenerative medicine

Warding off superbugs with a pinch of turmeric

Ophthalmic complications in patients on antidiabetic GLP-1 medications are concerning neuro-ophthalmologists

Physicians committee research policy director speaks today at hearing on taxpayer funded animal cruelty

New technology lights way for accelerating coral reef restoration

Electroencephalography may help guide treatments for language disorders

[Press-News.org] Blood vessel cells can repair, regenerate organs, say Weill Cornell scientists
2 studies suggest infusion of these cells may contribute to organ regeneration in the future