PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

SlipChip counts molecules with chemistry and a cell phone

2013-11-19
(Press-News.org) Contact information: Deborah Williams-Hedges
mr@caltech.edu
626-395-3227
California Institute of Technology
SlipChip counts molecules with chemistry and a cell phone In developing nations, rural areas, and even one's own home, limited access to expensive equipment and trained medical professionals can impede the diagnosis and treatment of disease. Many qualitative tests that provide a simple "yes" or "no" answer (like an at-home pregnancy test) have been optimized for use in these resource-limited settings. But few quantitative tests—those able to measure the precise concentration of biomolecules, not just their presence or absence—can be done outside of a laboratory or clinical setting. By leveraging their discovery of the robustness of "digital," or single-molecule quantitative assays, researchers at the California Institute of Technology (Caltech) have demonstrated a method for using a lab-on-a-chip device and a cell phone to determine a concentration of molecules, such as HIV RNA molecules, in a sample. This digital approach can consistently provide accurate quantitative information despite changes in timing, temperature, and lighting conditions, a capability not previously possible using traditional measurements.

In a study published on November 7 in the journal Analytical Chemistry, researchers in the laboratory of Rustem Ismagilov, Ethel Wilson Bowles and Robert Bowles Professor of Chemistry and Chemical Engineering, used HIV as the context for testing the robustness of digital assays. In order to assess the progression of HIV and recommend appropriate therapies, doctors must know the concentration of HIV RNA viruses in a patient's bloodstream, called a viral load. The problem is that the viral load tests used in the United States, such as those that rely on amplification of RNA via polymerase chain reaction (PCR), require bulky and expensive equipment, trained personnel, and access to infrastructure such as electricity, all of which are often not available in resource-limited settings. Furthermore, because it is difficult to control the environment in these settings, viral load tests must be "robust," or resilient to changes such as temperature and humidity fluctuations.

Many traditional approaches for measuring viral load involve converting a small quantity of RNA into DNA, which is then multiplied through DNA amplification—allowing researchers to see how much DNA is present in real time after each round of amplification, by monitoring the varying intensity of a fluorescent dye marking the DNA. These experiments—known as "kinetic" assays—result in a readout reflecting changes in intensity over time, called an amplification curve. To find the original concentration of the beginning bulk RNA sample, the amplification curve is then compared with standard curves representing known concentrations of RNA. Since assays, such as those for HIV, require many rounds of DNA amplification to collect a sufficiently bright fluorescent signal, small errors introduced by changes in environmental conditions can compound exponentially—meaning that these kinetic measurements are not robust enough to withstand changing conditions.

In this new study, the researchers hypothesized that they could use a digital amplification approach to create a robust quantitative technique. In digital amplification, a sample is split into enough small volumes such that each well contains either a single target molecule or no molecule at all. Ismagilov and his colleagues used a microfluidic device they previously invented, called SlipChip, to compartmentalize single molecules from a sample containing HIV RNA. SlipChip is made up of two credit card-sized plates stacked atop one another; the sample is first added to the interconnected channels of the SlipChip, and with a single "slip" of the top chip, the channels turn into individual wells.

In lieu of PCR, the researchers used a different amplification chemistry on this chip called digital reverse transcription-loop-mediated amplification (dRT-LAMP), which produces a bright fluorescent signal in the presence of a target molecule during the amplification process. The dRT-LAMP technique eliminates the need for continuous tracking of the intensity of fluorescence; instead, just one end-point readout measurement is used. The resulting patchwork of "positive" or "negative" wells on the device, in combination with statistical analysis, enables single molecules to be counted.

"In each well, you are performing a qualitative experiment; the result is like a pregnancy test: either yes or no, positive or negative, for the presence of an HIV RNA molecule," says David Selck, a graduate student in Ismagilov's lab and a first author on the study. "But by doing a couple of thousand qualitative experiments, you end up getting a numerical, quantitative result: the concentration of HIV RNA molecules in the sample. By calculating the concentration from the number of wells that contain fluorescence—and therefore HIV—you're leveraging the robustness of many qualitative 'yes or no' experiments to fulfill the need for a quantitative, numerical result," he says.

When the researchers compared quantification results from dRT-LAMP to those obtained by the real-time, kinetic version of this chemistry, RT-LAMP, they found that the digital format provided accurate results despite changes in temperature and time, while the kinetic format could not. This finding adds to a body of research that the laboratory has been developing on the robustness of converting analog signals (i.e., a readout reflecting a changing concentration over time) into a series of positive or negative digital signals. Another recent paper, published in the Journal of the American Chemical Society, explored a variation on this analog-to-digital conversion.

Ismagilov's group also tested a way to take an image of the fluorescence pattern in the wells of the SlipChip and, from that image, determine the viral load—without the use of expensive microscopes or trained staff. They turned to a nearly ubiquitous 21st-century technology: the smartphone.

The researchers placed the SlipChip in a makeshift darkroom (a shoebox with a hole in the top) and then photographed its wells using a smartphone outfitted with a special filter attachment—so that the smartphone flash would be able to "excite" the fluorescent DNA dye, and the smartphone camera could capture an image of the fluorescence. The resulting images were uploaded to Microsoft SkyDrive, a cloud-based server, where custom software—designed by the researchers—determined the viral load concentration and sent the results back in an email. These capabilities allow the digital approach to perform reliably with automated processing, regardless of how poor the imaging conditions may be. As an example of its simplicity, a 5-year-old child was able to use this cell phone imaging method to obtain quantitative results using strands of RNA extracted from a noninfectious virus (a video of this demonstration is available on the Ismagilov lab's YouTube channel).

"We were surprised that this cell phone method worked, because both cell phone imaging and automated processing are error prone," Ismagilov says. "Because digital assays involve simply distinguishing positives from negatives, we found that even these error-prone approaches can be used to count single molecules reliably."

The fact that this method is robust not only to changes in time and temperature but also is amenable to cell phone imaging and automated processing makes it a promising technology for limited-resource settings. "We believe that our findings of the robustness of digital amplification could signal a major paradigm shift in how quantitative measurements are obtained at home, in the field, and in developing countries," Ismagilov says.

The researchers stress that there is still room for improvement, however. "While in this study we were examining robustness and used purified RNA, the next generation of devices will isolate HIV RNA molecules directly from patients' blood," says Bing Sun, a graduate student in Ismagilov's lab and a first author on the study. "We will also adapt the devices for other viruses, such as hepatitis C. By combining these improvements with the cell phone imaging method, we plan to create something that could actually be used in the real world," Sun adds.

INFORMATION:

The paper is titled "Increased Robustness of Single-Molecule Counting with Microfluidics, Digital Isothermal Amplification, and a Mobile Phone versus Real-Time Kinetic Measurements." In addition to Selck, Sun, and Ismagilov, the paper is coauthored by Mikhail A. Karymov, an associate scientist at Caltech. The work was funded by the Defense Advanced Research Projects Agency award number HR0011-11-2-0006, and by the National Institutes of Health award numbers R01EB012946 and 5DP1OD003584. Microfluid technologies developed by Ismagilov's group have been licensed to Emerald BioStructures, Randance Technologies, and SlipChip LLC.

END



ELSE PRESS RELEASES FROM THIS DATE:

Stress reduction through meditation may aid in slowing the progression of Alzheimer's disease

2013-11-19
Stress reduction through meditation may aid in slowing the progression of Alzheimer's disease BIDMC pilot study shows promise for age-related cognitive diseases BOSTON – It's well known that the brains of meditators change, but it's not entirely ...

A superconductor-surrogate earns its stripes

2013-11-19
A superconductor-surrogate earns its stripes Berkeley Lab study reveals origins of an exotic phase of matter Understanding superconductivity – whereby certain materials can conduct electricity without any loss of energy – has proved to be one of the most ...

Like other offenses, cyberdeviance and cybercrime seem to start and peak in the teen years

2013-11-19
Like other offenses, cyberdeviance and cybercrime seem to start and peak in the teen years Tech-y teens, often more curious than criminal, are likely to start turning their talents to cyberdeviance and cybercrime at about age 15, with such activities peaking ...

Princeton-Harvard study finds Harlem charter school students more likely to attend college

2013-11-19
Princeton-Harvard study finds Harlem charter school students more likely to attend college All male students stayed out of jail, female students were 71 percent less likely to become teen moms PRINCETON, ...

Special issue of Gut Microbes on Helicobacter pylori

2013-11-19
Special issue of Gut Microbes on Helicobacter pylori A special issue on Helicobacter pylori has been published by Landes Bioscience (Austin, TX USA). The articles contained in this special issue of the journal Gut Microbes have been authored by world-class investigators ...

Study finds similar outcomes for repair or replacement of damaged heart valves

2013-11-19
Study finds similar outcomes for repair or replacement of damaged heart valves Penn Medicine-led research provides first rigorous comparison of two surgical approaches for severe heart valve disease DALLAS – New research presented ...

Global warming in the Canadian Arctic

2013-11-19
Global warming in the Canadian Arctic Thaw ponds: An unaccounted source of greenhouse gas Québec City, November 18, 2013 – Ph.D. student Karita Negandhi and professor Isabelle Laurion from INRS'Eau Terre Environnement Research Centre, in collaboration with other Canadian, ...

Optimizing electronic correlations for superconductivity

2013-11-19
Optimizing electronic correlations for superconductivity The decadeslong effort to create practical superconductors moved a step forward with the discovery at Rice University that two distinctly different iron-based compounds share common mechanisms for moving electrons. Samples ...

Staying on medication may not translate to avoiding readmission

2013-11-19
Staying on medication may not translate to avoiding readmission DURHAM, N.C. – A targeted effort to help high-risk heart failure patients stay on their medications did improve adherence to drug regimens, but had surprisingly little effect lowering hospital ...

Avoiding poisons: A matter of bitter taste

2013-11-19
Avoiding poisons: A matter of bitter taste Recent highlights in the journal Molecular Biology and Evolution In most animals, taste has evolved to avoid all things bitter---a key to survival--- to avoid eating something that could ...

LAST 30 PRESS RELEASES:

Nanowire breakthrough reveals elusive astrocytes

Novel liver cancer vaccine achieves responses in rare disease affecting children and young adults

International study finds gene linked with risk of delirium

Evidence suggests early developing human brains are preconfigured with instructions for understanding the world

Absolutely metal: scientists capture footage of crystals growing in liquid metal

Orangutans can’t master their complex diets without cultural knowledge

Ancient rocks reveal themselves as ‘carbon sponges’

Antarctic mountains could boost ocean carbon absorption as ice sheets thin

Volcanic bubbles help foretell the fate of coral in more acidic seas

Inspired by a family’s struggle, a scientist helps uncover defense against Alzheimer’s disease

The Einstein Foundation Berlin awards €350,000 prize to advance research quality

Synthetic stress hormone dexamethasone could reduce breast cancer metastases

Snakebites: COVID vaccine tech could limit venom damage

Which social determinants of health have the greatest impact on rural–urban colorectal cancer mortality disparities?

Endings and beginnings: ACT releases its final data, shaping the future of cosmology

The world’s first elucidation of the immunomodulatory effects of kimchi by the World Institute of Kimchi

Nearly seven in 10 Medicaid patients not receiving treatment within six months of an opioid use disorder diagnosis, study finds

Vertical hunting helps wild cats coexist in Guatemala’s forests, study finds

New research confirms HPV vaccination prevents cervical cancer

Oldest modern shark mega-predator swam off Australia during the age of dinosaurs

Scientists unveil mechanism behind greener ammonia production

Sharper, straighter, stiffer, stronger: Male green hermit hummingbirds have bills evolved for fighting

Nationwide awards honor local students and school leaders championing heart, brain health

Epigenetic changes regulate gene expression, but what regulates epigenetics?

Nasal drops fight brain tumors noninvasively

Okayama University of Science Ranked in the “THE World University Rankings 2026” for the Second Consecutive Year

New study looks at (rainforest) tea leaves to predict fate of tropical forests

When trade routes shift, so do clouds: Florida State University researchers uncover ripple effects of new global shipping regulations

Kennesaw State assistant professor receives grant to improve shelf life of peptide- and protein-based drugs

Current heart attack screening tools are not optimal and fail to identify half the people who are at risk

[Press-News.org] SlipChip counts molecules with chemistry and a cell phone