PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A superconductor-surrogate earns its stripes

Berkeley Lab study reveals origins of an exotic phase of matter

2013-11-19
(Press-News.org) Contact information: Alison Hatt
ajhatt@lbl.gov
510-486-7154
DOE/Lawrence Berkeley National Laboratory
A superconductor-surrogate earns its stripes Berkeley Lab study reveals origins of an exotic phase of matter

Understanding superconductivity – whereby certain materials can conduct electricity without any loss of energy – has proved to be one of the most persistent problems in modern physics. Scientists have struggled for decades to develop a cohesive theory of superconductivity, largely spurred by the game-changing prospect of creating a superconductor that works at room temperature, but it has proved to be a tremendous tangle of complex physics.

Now scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have teased out another important tangle from this giant ball of string, bringing us a significant step closer to understanding how high- temperature superconductors work their magic. Working with a model compound, the team illuminated the origins of the so-called "stripe phase" in which electrons become concentrated in stripes throughout a material, and which appears to be linked to superconductivity.

"We're trying to understand nanoscale order and how that determines material properties such as superconductivity," said Robert Kaindl, a physicist in Berkeley Lab's Materials Sciences Division. "Using ultrafast optical techniques, we are able to observe how charge stripes start to form on a time scale of hundreds of femtoseconds." A femtosecond is just one millionth of one billionth of a second.

Electrons in a solid material interact extremely quickly and on very short length scales, so to observe their behavior researchers have built extraordinarily powerful "microscopes" that zoom into fast events using short flashes of laser light. Kaindl and his team brought to bear the power of their ultrafast-optics expertise to understand the stripe phase in strontium-doped lanthanum nickelate (LSNO), a close cousin of high-temperature superconducting materials.

"We chose to work with LSNO because it has essential similarities to the cuprates (an important class of high-temperature superconductors), but its lack of superconductivity lets us focus on understanding just the stripe phase," said Giacomo Coslovich, a postdoctoral researcher at Berkeley Lab working with Kaindl.

"With science, you have to simplify your problems," Coslovich continued. "If you try to solve them all at once with their complicated interplay, you will never understand what's going on."

Kaindl and Coslovich are corresponding authors on a paper reporting these results in Nature Communications, titled, "Ultrafast charge localization in a stripe-phase nickelate." Coauthoring the paper are Bernhard Huber, Yi Zhu, Yi-De Chuang, Zahid Hussain, Hans Bechtel, Michael Martin and Robert Schoenlein of Berkeley Lab, along with Wei-Sheng Lee, and Zhi-Xun Shen of SLAC National Accelerator Laboratory, and Takao Sasagawa of Tokyo Institute of Technology.

Stripes are seen in all high-temperature superconductors near the superconducting transition temperature. In this LSNO crystal stripes form only at cryogenic temperatures of about 168 degrees Celsius (approximately 271 °F), yet at far higher temperatures the team hit upon large changes of the material's infrared reflectivity. These invisible "color" changes represent an energy threshold for electrical currents, dubbed the energetic "pseudogap", which grows as the crystal cools – revealing a progressive localization of charges around the nickel atoms.

The scientists then examined the dynamics of LSNO in "pump-probe" experiments, where they melted stripes with an initial ultrafast pulse of laser light and measured the optical changes with a second, delayed pulse. This allowed them to map out the early steps of charge ordering, exposing surprisingly fast localization dynamics preceding the development of organized stripe patterns. A final twist came when they probed the vibrations between nickel and oxygen atoms, uncovering a remarkably strong coupling to the localized electrons with synchronous dynamics.

Beyond the ultrafast measurements, the team also studied X-ray scattering and the infrared reflectance of the material at the neighboring Advanced Light Source, to develop a thorough, cohesive understanding of the stripe phase and why it forms.

Said Kaindl, "We took advantage of our fortunate location in the national lab environment, where we have both these ultrafast techniques and the Advanced Light Source. This collaborative effort made this work possible."

Having illuminated the origins of the stripe phase in LSNO, the researchers expect their results to provide new impetus to understanding the "pseudogap" in other correlated oxides – especially in high-temperature superconductors where fluctuating stripes occur while their role for the superconductivity mechanism remains unclear.



INFORMATION:

This research was supported by the U.S. Department of Energy, Office of Science.

Additional Information:

For more on the Ultrafast Materials program at Berkeley Lab, visit http://www.lbl.gov/msd

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

The Advanced Light Source is a third-generation synchrotron light source producing light in the x-ray region of the spectrum that is a billion times brighter than the sun. A DOE national user facility, the ALS attracts scientists from around the world and supports its users in doing outstanding science in a safe environment. For more information visit www-als.lbl.gov.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.



ELSE PRESS RELEASES FROM THIS DATE:

Like other offenses, cyberdeviance and cybercrime seem to start and peak in the teen years

2013-11-19
Like other offenses, cyberdeviance and cybercrime seem to start and peak in the teen years Tech-y teens, often more curious than criminal, are likely to start turning their talents to cyberdeviance and cybercrime at about age 15, with such activities peaking ...

Princeton-Harvard study finds Harlem charter school students more likely to attend college

2013-11-19
Princeton-Harvard study finds Harlem charter school students more likely to attend college All male students stayed out of jail, female students were 71 percent less likely to become teen moms PRINCETON, ...

Special issue of Gut Microbes on Helicobacter pylori

2013-11-19
Special issue of Gut Microbes on Helicobacter pylori A special issue on Helicobacter pylori has been published by Landes Bioscience (Austin, TX USA). The articles contained in this special issue of the journal Gut Microbes have been authored by world-class investigators ...

Study finds similar outcomes for repair or replacement of damaged heart valves

2013-11-19
Study finds similar outcomes for repair or replacement of damaged heart valves Penn Medicine-led research provides first rigorous comparison of two surgical approaches for severe heart valve disease DALLAS – New research presented ...

Global warming in the Canadian Arctic

2013-11-19
Global warming in the Canadian Arctic Thaw ponds: An unaccounted source of greenhouse gas Québec City, November 18, 2013 – Ph.D. student Karita Negandhi and professor Isabelle Laurion from INRS'Eau Terre Environnement Research Centre, in collaboration with other Canadian, ...

Optimizing electronic correlations for superconductivity

2013-11-19
Optimizing electronic correlations for superconductivity The decadeslong effort to create practical superconductors moved a step forward with the discovery at Rice University that two distinctly different iron-based compounds share common mechanisms for moving electrons. Samples ...

Staying on medication may not translate to avoiding readmission

2013-11-19
Staying on medication may not translate to avoiding readmission DURHAM, N.C. – A targeted effort to help high-risk heart failure patients stay on their medications did improve adherence to drug regimens, but had surprisingly little effect lowering hospital ...

Avoiding poisons: A matter of bitter taste

2013-11-19
Avoiding poisons: A matter of bitter taste Recent highlights in the journal Molecular Biology and Evolution In most animals, taste has evolved to avoid all things bitter---a key to survival--- to avoid eating something that could ...

The big male nose

2013-11-19
The big male nose University of Iowa study explains why men's noses are bigger than women's Human noses come in all shapes and sizes. But one feature seems to hold true: Men's noses are bigger than women's. A new study from the University of Iowa concludes ...

Pressure cooking to improve electric car batteries

2013-11-19
Pressure cooking to improve electric car batteries By creating nanoparticles with controlled shape, engineers believe smaller, more powerful and energy efficient batteries can be built RIVERSIDE, Calif. (http://www.ucr.edu) — Batteries that power electric ...

LAST 30 PRESS RELEASES:

Tracing the quick synthesis of an industrially important catalyst

New software sheds light on cancer’s hidden genetic networks

UT Health San Antonio awarded $3 million in CPRIT grants to bolster cancer research and prevention efforts in South Texas

Third symposium spotlights global challenge of new contaminants in China’s fight against pollution

From straw to soil harmony: International team reveals how biochar supercharges carbon-smart farming

Myeloma: How AI is redrawing the map of cancer care

Manhattan E. Charurat, Ph.D., MHS invested as the Homer and Martha Gudelsky Distinguished Professor in Medicine at the University of Maryland School of Medicine

Insilico Medicine’s Pharma.AI Q4 Winter Launch Recap: Revolutionizing drug discovery with cutting-edge AI innovations, accelerating the path to pharmaceutical superintelligence

Nanoplastics have diet-dependent impacts on digestive system health

Brain neuron death occurs throughout life and increases with age, a natural human protein drug may halt neuron death in Alzheimer’s disease

SPIE and CLP announce the recipients of the 2025 Advanced Photonics Young Innovator Award

Lessons from the Caldor Fire’s Christmas Valley ‘Miracle’

Ant societies rose by trading individual protection for collective power

Research reveals how ancient viral DNA shapes early embryonic development

A molecular gatekeeper that controls protein synthesis

New ‘cloaking device’ concept to shield sensitive tech from magnetic fields

Researchers show impact of mountain building and climate change on alpine biodiversity

Study models the transition from Neanderthals to modern humans in Europe

University of Phoenix College of Doctoral Studies releases white paper on AI-driven skilling to reduce burnout and restore worker autonomy

AIs fail at the game of visual “telephone”

The levers for a sustainable food system

Potential changes in US homelessness by ending federal support for housing first programs

Vulnerability of large language models to prompt injection when providing medical advice

Researchers develop new system for high-energy-density, long-life, multi-electron transfer bromine-based flow batteries

Ending federal support for housing first programs could increase U.S. homelessness by 5% in one year, new JAMA study finds

New research uncovers molecular ‘safety switch’ shielding cancers from immune attack

Bacteria resisting viral infection can still sink carbon to ocean floor

Younger biological age may increase depression risk in older women during COVID-19

Bharat Innovates 2026 National Basecamp Showcases India’s Most Promising Deep-Tech Ventures

Here’s what determines whether your income level rises or falls

[Press-News.org] A superconductor-surrogate earns its stripes
Berkeley Lab study reveals origins of an exotic phase of matter