(Press-News.org) Contact information: Heather Dewar
hdewar@umd.edu
301-405-9267
University of Maryland
'The era of neutrino astronomy has begun'
In a first, IceCube observatory at the South Pole tracks cosmic neutrinos
COLLEGE PARK, MD – Astrophysicists using a telescope embedded in Antarctic ice have succeeded in a quest to detect and record the mysterious phenomena known as cosmic neutrinos – nearly massless particles that stream to Earth at the speed of light from outside our solar system, striking the surface in a burst of energy that can be as powerful as a baseball pitcher's fastball. Next they hope to build on the early success of the IceCube Neutrino Observatory to detect the source of these high-energy particles, said Physics Professor Gregory Sullivan, who led the University of Maryland's 12-person team of contributors to the IceCube Collaboration.
"The era of neutrino astronomy has begun," Sullivan said as the IceCube Collaboration announced the observation of 28 very high-energy particle events that constitute the first solid evidence for astrophysical neutrinos from cosmic sources.
By studying the neutrinos that IceCube detects, scientists can learn about the nature of astrophysical phenomena occurring millions, or even billions of light years from Earth, Sullivan said. "The sources of neutrinos, and the question of what could accelerate these particles, has been a mystery for more than 100 years. Now we have an instrument that can detect astrophysical neutrinos. It's working beautifully, and we expect it to run for another 20 years."
The collaboration's report on the first cosmic neutrino records from the IceCube Neutrino Observatory, collected from instruments embedded in one cubic kilometer of ice at the South Pole, was published Nov. 22 in the journal Science.
"This is the first indication of very high-energy neutrinos coming from outside our solar system," said University of Wisconsin-Madison Physics Professor Francis Halzen, principal investigator of IceCube. "It is gratifying to finally see what we have been looking for. This is the dawn of a new age of astronomy."
"Neutrinos are one of the basic building blocks of our universe," said UMD Physics Associate Professor Kara Hoffman, an IceCube team member. Billions of them pass through our bodies unnoticed every second. These extremely high-energy particles maintain their speed and direction unaffected by magnetic fields. The vast majority of neutrinos originate either in the sun or in Earth's own atmosphere. Far more rare are astrophysical neutrinos, which come from the outer reaches of our galaxy or beyond.
The origin and cause of astrophysical neutrinos are unknown, though gamma ray bursts, active galactic nuclei and black holes are potential sources. Better understanding of these neutrinos is critically important in particle physics, astrophysics and astronomy, and scientists have worked for more than 50 years to design and build a high-energy neutrino detector of this type.
IceCube was designed to accomplish two major scientific goals: measure the flux, or rate, of high-energy neutrinos and try to identify some of their sources. The neutrino observatory was built and is operated by an international collaboration of more than 250 physicists and engineers. UMD physicists have been key collaborators on IceCube since 2002, when its unique design was devised and construction began.
IceCube is made up of 5,160 digital optical modules suspended along 86 strings embedded in ice beneath the South Pole. The National Science Foundation-supported observatory detects neutrinos through the tiny flashes of blue light, called Cherenkov light, produced when neutrinos interact in the ice. Computers at the IceCube laboratory collect raw data in near-real time from detectors buried deep in the Antarctic ice. Events selected for physics studies are sent north via satellite for use by any member of the IceCube Collaboration. The UMD Maryland IceCube team designed the data collection system and much of the collaboration's software. Construction took nearly a decade, and the completed detector began gathering data in May 2011.
"IceCube is a wonderful and unique astrophysical telescope – it is deployed deep in the Antarctic ice but looks over the entire Universe, detecting neutrinos coming through the Earth from the northern skies, as well as from around the southern skies," said Vladimir Papitashvili of the National Science Foundation (NSF) Division of Polar Programs.
In April 2012 IceCube detected two high-energy events above 1 petaelectronvolt (PeV), nicknamed Bert and Ernie, the first astrophysical neutrinos definitively recorded by a terrestrial detector. After Bert and Ernie were discovered, the IceCube team searched their records from May 2010 to May 2012 of events that fell slightly below the energy level of their original search. They discovered 26 more high-energy events, all at levels of 30 teraelectronvolts (TeV) or higher, indicative of astrophysical neutrinos. Preliminary results of this analysis were presented May 15 at the IceCube Particle Astrophysics Symposium at UW–Madison. The analysis presented in Science reveals a highly statistically significant signal (more than 4 sigma), providing solid evidence that IceCube has successfully detected high-energy extraterrestrial neutrinos, said UMD's Sullivan.
Since astrophysical neutrinos move in straight lines unimpeded by outside forces, they can act as pointers to the place in the galaxy where they originated. The 28 events recorded so far are too few to point to any one location, Sullivan said. Over the coming years, the IceCube team will watch, "like waiting for a long exposure photograph," as more measurements fill in a picture that may reveal the point of origin of these intriguing phenomena.
New detection systems for astrophysical neutrinos are also in the works. Hoffman is leading the development of the Askaryan Radio Array, a neutrino telescope that uses radio frequency, which transmits best through very cold ice, to detect the particles. Plans are underway for 37 subsurface clusters of radio antennae.
The IceCube Neutrino Observatory was built under a NSF Major Research Equipment and Facilities Construction grant, with assistance from partner funding agencies around the world. The NSF's Division of Polar Programs and Physics Division continue to support the project with a Maintenance and Operations grant, along with international support from participating institutes and their funding agencies.
INFORMATION:
UMD contributors to the IceCube collaboration include Sullivan and Hoffman; UMD faculty and staff members Erik Blaufuss, John Felde, Henrike Wissing, Alex Olivas, Donald La Dieu, and Torsten Schmidt; and graduate students Elim Cheung, Robert Hellauer, Ryan Maunu, and Michael Richman.
Media contact:
Heather Dewar
301-405-9267
hdewar@umd.edu
University of Maryland College of Computer, Mathematical and Natural Sciences
Ice Cube Collaboration, "Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector," in Science Nov. 22, 2013. http://www.sciencemag.org/lookup/doi/10.1126/science. 1242856
A multimedia gallery is available at: http://icecube.wisc.edu/gallery/press
'The era of neutrino astronomy has begun'
In a first, IceCube observatory at the South Pole tracks cosmic neutrinos
2013-11-22
ELSE PRESS RELEASES FROM THIS DATE:
Study of fluke parasites identifies drug resistance mutations; raises hope for new therapies
2013-11-22
Study of fluke parasites identifies drug resistance mutations; raises hope for new therapies
An international group of scientists led by Tim Anderson Ph.D., at the Texas Biomedical Research Institute and Philip LoVerde Ph.D., at the University of Texas ...
IceCube detects first high-energy neutrinos from the cosmos
2013-11-22
IceCube detects first high-energy neutrinos from the cosmos
World's largest particle detector opens up a new branch of astronomy
This news release is available in German. Within the eternal ice of Antarctica, scientists have observed the first ...
Discovery could usher in new ice age of astrophysics
2013-11-22
Discovery could usher in new ice age of astrophysics
(Edmonton) Scientists using a particle detector made of ice at the South Pole have found the first indication of high-energy neutrinos that originate outside of the solar system.
"This is a huge result. It ...
Improve learning by taming instructional complexity
2013-11-22
Improve learning by taming instructional complexity
Carnegie Mellon and Temple researchers offer fresh perspective for educational research
VIDEO:
From using concrete or ...
Researchers identify lifestyle factors linked to a healthy pregnancy
2013-11-22
Researchers identify lifestyle factors linked to a healthy pregnancy
Modifiable factors such as weight, diet and drug abuse could be targeted for change
On bmj.com today, researchers identify certain lifestyle factors that make it more likely for a woman ...
Dreading pain can be worse than pain itself
2013-11-22
Dreading pain can be worse than pain itself
Press release from PLOS Computational Biology
Faced with inevitable pain, most people choose to "get it out of the way" as soon as possible, according to research published this week in PLOS Computational Biology. ...
UEA researchers pioneer first patient-specific 3-D virtual birth simulator
2013-11-22
UEA researchers pioneer first patient-specific 3-D virtual birth simulator
Computer scientists from the University of East Anglia are working to create a virtual birthing simulator that will help doctors and midwives prepare for unusual or dangerous births.
The ...
Lowering 3 risk factors could cut obesity-related risk of heart disease by more than half
2013-11-22
Lowering 3 risk factors could cut obesity-related risk of heart disease by more than half
Research looks at blood pressure, cholesterol, blood glucose
Boston, MA — Controlling blood pressure, serum cholesterol, and blood glucose may substantially reduce the ...
Lowering blood pressure, cholesterol and blood sugar could halve obesity-related risk of heart disease
2013-11-22
Lowering blood pressure, cholesterol and blood sugar could halve obesity-related risk of heart disease
Controlling blood pressure, cholesterol, and blood glucose may substantially reduce the risk of heart disease and stroke associated with being overweight ...
Astronomers reveal mystery of brightest ever gamma-ray burst
2013-11-22
Astronomers reveal mystery of brightest ever gamma-ray burst
New research explains celestial phenomenon recorded earlier this year
For the first time, a team of astronomers from around the world, including experts from the University of Leicester, have used ...
LAST 30 PRESS RELEASES:
KAIST Develops Retinal Therapy to Restore Lost Vision
Adipocyte-hepatocyte signaling mechanism uncovered in endoplasmic reticulum stress response
Mammals were adapting from life in the trees to living on the ground before dinosaur-killing asteroid
Low LDL cholesterol levels linked to reduced risk of dementia
Thickening of the eye’s retina associated with greater risk and severity of postoperative delirium in older patients
Almost one in ten people surveyed report having been harmed by the NHS in the last three years
Enhancing light control with complex frequency excitations
New research finds novel drug target for acute myeloid leukemia, bringing hope for cancer patients
New insight into factors associated with a common disease among dogs and humans
Illuminating single atoms for sustainable propylene production
New study finds Rocky Mountain snow contamination
Study examines lactation in critically ill patients
UVA Engineering Dean Jennifer West earns AIMBE’s 2025 Pierre Galletti Award
Doubling down on metasurfaces
New Cedars-Sinai study shows how specialized diet can improve gut disorders
Making moves and hitting the breaks: Owl journeys surprise researchers in western Montana
PKU Scientists simulate the origin and evolution of the North Atlantic Oscillation
ICRAFT breakthrough: Unlocking A20’s dual role in cancer immunotherapy
How VR technology is changing the game for Alzheimer’s disease
A borrowed bacterial gene allowed some marine diatoms to live on a seaweed diet
Balance between two competing nerve proteins deters symptoms of autism in mice
Use of antifungals in agriculture may increase resistance in an infectious yeast
Awareness grows of cancer risk from alcohol consumption, survey finds
The experts that can outsmart optical illusions
Pregnancy may reduce long COVID risk
Scientists uncover novel immune mechanism in wheat tandem kinase
Three University of Virginia Engineering faculty elected as AAAS Fellows
Unintentional drug overdoses take a toll across the U.S. unequally, study finds
A step toward plant-based gelatin
ECMWF unveils groundbreaking ML tool for enhanced fire prediction
[Press-News.org] 'The era of neutrino astronomy has begun'In a first, IceCube observatory at the South Pole tracks cosmic neutrinos