PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A new, flying jellyfish-like machine

Researchers present simplified method of robotic flight at APS Division of Fluid Dynamics Meeting in Pittsburgh

2013-11-25
(Press-News.org) Contact information: Jason Socrates Bardi
dfdmedia@aps.org
240-535-4954
American Physical Society
A new, flying jellyfish-like machine Researchers present simplified method of robotic flight at APS Division of Fluid Dynamics Meeting in Pittsburgh VIDEO: A jellyfish-like flying machine hovers in air by flapping its four wings 20 times per second.
Click here for more information.

WASHINGTON D.C. Nov. 24, 2013 -- Up, up in the sky: It's a bird! It's a plane! It's a . . . jellyfish? That's what researchers have built -- a small vehicle whose flying motion resembles the movements of those boneless, pulsating, water-dwelling creatures.

The work, which will be presented at the American Physical Society's Division of Fluid Dynamics meeting on November 24 in Pittsburgh, demonstrates a new method of flight that could transport miniaturized future robots for surveillance, search-and-rescue, and monitoring of the atmosphere and traffic.

Many approaches to building small aerial robots try to mimic the flight of insects such as fruit flies. The challenge in that, explained Leif Ristroph of New York University, is that the flapping wing of a fly is inherently unstable. To stay in flight and to maneuver, a fly must constantly monitor its environment to sense every gust of wind or approaching predator, adjusting its flying motion to respond within fractions of a second. To recreate that sort of complex control in a mechanical device – and to squeeze it into a small robotic frame – is extremely difficult, Ristroph said.

After some tinkering, he devised a new way of flapping-wing flight that doesn't need any sort of control or feedback system to be stable, and is akin to the swimming motions of jellyfish. The prototype device, weighing just two grams and spanning eight centimeters in width, flies by flapping four wings that are arranged like petals on a flower. While the up-and-down motion of the wings resembles a pulsating jelly,, the device's ultimate fluttering flight may be more similar to that of a moth. The vehicle can hover, ascend, and fly in a particular direction.

In addition to showing that the flying device is indeed stable, Ristroph and Stephen Childress, also at NYU, found that the size of the machine mainly depends on the weight and power of the motor.

The prototype is limited: it's attached to an external power source and can't steer, either autonomously or via remote control. Although researchers are still far away from building a practical robot, these new results show a proof of principle, forming a blueprint for designing more sophisticated and complex vehicles, Ristroph said.

And, he adds, the simplicity of design bodes well for miniaturizing the vehicles. The longstanding goal for researchers has been to shrink flying robots down to the size of a centimeter, allowing them to squeeze into small spaces and fly around undetected. The simpler the better, he said. "And ours is one of the simplest, in that it just uses flapping wings."

The presentation "Hovering of a jellyfish-like flying machine," is at 2:15 p.m. on Sunday, November 24, 2013 in the David L. Lawrence Convention Center, Room 305. ABSTRACT: http://meeting.aps.org/Meeting/DFD13/Event/202303

###

MEETING INFORMATION The 66th Annual Division of Fluid Dynamics Meeting will be held at David L. Lawrence Convention Center in Pittsburgh, Pennsylvania from November 24-26, 2013. More meeting information: http://www.apsdfd2013.pitt.edu

REGISTERING AS PRESS Any credentialed journalist, full-time or freelance, may attend the conference free of charge. Please email: dfdmedia@aps.org and include "DFD Press" in the subject line. Workspace will be provided on-site during the meeting, and the week before news, videos and graphics will be made available on the Virtual Press Room: http://www.aps.org/units/dfd/pressroom/press.cfm

ABOUT THE APS DIVISION OF FLUID DYNAMICS The Division of Fluid Dynamics (DFD) of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. DFD Website: http://www.aps.org/units/dfd/index.cfm

END



ELSE PRESS RELEASES FROM THIS DATE:

Gene-silencing study finds new targets for Parkinson's disease

2013-11-25
Gene-silencing study finds new targets for Parkinson's disease NIH study sheds light on treatment of related disorders Scientists at the National Institutes of Health have used RNA interference (RNAi) technology ...

Decay used to construct quantum information

2013-11-25
Decay used to construct quantum information Usually, when researchers work with quantum information, they do everything they can to prevent the information from decaying. Now researchers at the Niels Bohr Institute, among others, have flipped ...

Diamond 'flaws' pave way for nanoscale MRI

2013-11-25
Diamond 'flaws' pave way for nanoscale MRI By exploiting flaws in miniscule diamond fragments, researchers say they have achieved enough coherence of the magnetic moment inherent in these defects to harness their potential for precise quantum sensors in a ...

NIST demonstrates how losing information can benefit quantum computing

2013-11-25
NIST demonstrates how losing information can benefit quantum computing BOULDER, Colo -- Suggesting that quantum computers might benefit from losing some data, physicists at the National Institute of Standards and Technology (NIST) have entangled—linked ...

How living cells solved a needle in a haystack problem to produce electrical signals

2013-11-25
How living cells solved a needle in a haystack problem to produce electrical signals Filtered from a vast sodium sea, more than 1 million calcium ions per second gush through our cells' pores to generate charges Scientists have figured out how calcium channels – the infinitesimal ...

New genomic study provides a glimpse of how whales could adapt to ocean

2013-11-25
New genomic study provides a glimpse of how whales could adapt to ocean The latest study was published online in Nature Genetics November 24, 2013, Shenzhen, China - In a paper published in Nature Genetics, researchers from Korea Institute of Ocean Science and Technology, Korea Genome Research ...

Scientists prove X-ray laser can solve protein structures from scratch

2013-11-25
Scientists prove X-ray laser can solve protein structures from scratch SLAC's linac coherent light source reaches key milestone in decoding biological structures that were out of reach A study shows for the first time that X-ray lasers can ...

X-rays reveal another feature of high-temperature superconductivity

2013-11-25
X-rays reveal another feature of high-temperature superconductivity Discovery of a giant resonance puts these materials further apart Classical and high-temperature superconductors differ hugely in the value of the critical temperatures at which ...

UNL scientists develop novel X-ray device

2013-11-25
UNL scientists develop novel X-ray device Research quality X-rays could have widespread applications Lincoln, Neb., Nov. 24 – Using a compact but powerful laser, a research team at the University of Nebraska-Lincoln has developed a new way to generate ...

Unusual greenhouse gases may have raised ancient Martian temperature

2013-11-25
Unusual greenhouse gases may have raised ancient Martian temperature Much like the Grand Canyon, Nanedi Valles snakes across the Martian surface suggesting that liquid water once crossed the landscape, according to a team of researchers who believe that molecular hydrogen ...

LAST 30 PRESS RELEASES:

Cercus electric stimulation enables cockroach with trajectory control and spatial cognition training

Day-long conference addresses difficult to diagnose lung disease

First-ever cardiogenic shock academy features simulation lab

Thirty-year mystery of dissonance in the “ringing” of black holes explained

Less intensive works best for agricultural soil

Arctic rivers project receives “national champion” designation from frontiers foundation

Computational biology paves the way for new ALS tests

Study offers new hope for babies born with opioid withdrawal syndrome

UT, Volkswagen Group of America celebrate research partnership

New Medicare program could dramatically improve affordability for cancer drugs – if patients enroll

Are ‘zombie’ skin cells harmful or helpful? The answer may be in their shapes

University of Cincinnati Cancer Center presents research at AACR 2025

Head and neck, breast, lung and survivorship studies headline Dana-Farber research at AACR Annual Meeting 2025

AACR: Researchers share promising results from MD Anderson clinical trials

New research explains why our waistlines expand in middle age

Advancements in muon detection: Taishan Antineutrino Observatory's innovative top veto tracker

Chips off the old block

Microvascular decompression combined with nerve combing for atypical trigeminal neuralgia

Cutting the complexity from digital carpentry

Lung immune cell type “quietly” controls inflammation in COVID-19

Fiscal impact of expanded Medicare coverage for GLP-1 receptor agonists to treat obesity

State and sociodemographic trends in US cigarette smoking with future projections

Young adults drive historic decline in smoking

NFCR congratulates Dr. Robert C. Bast, Jr. on receiving the AACR-Daniel D. Von Hoff Award for Outstanding Contributions to Education and Training in Cancer Research

Chimpanzee stem cells offer new insights into early embryonic development

This injected protein-like polymer helps tissues heal after a heart attack

FlexTech inaugural issue launches, pioneering interdisciplinary innovation in flexible technology

In Down syndrome mice, 40Hz light and sound improve cognition, neurogenesis, connectivity

Methyl eugenol: potential to inhibit oxidative stress, address related diseases, and its toxicological effects

A vascularized multilayer chip reveals shear stress-induced angiogenesis in diverse fluid conditions

[Press-News.org] A new, flying jellyfish-like machine
Researchers present simplified method of robotic flight at APS Division of Fluid Dynamics Meeting in Pittsburgh