PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Polymer gel, heal thyself: University of Pittsburgh engineering team proposes new composites that can regenerate when damaged

2013-11-26
(Press-News.org) Contact information: John Fedele
jfedele@pitt.edu
412-624-4148
University of Pittsburgh
Polymer gel, heal thyself: University of Pittsburgh engineering team proposes new composites that can regenerate when damaged

PITTSBURGH (November 25, 2013) … When a chair leg breaks or a cell phone shatters, either must be repaired or replaced. But what if these materials could be programmed to regenerate-themselves, replenishing the damaged or missing components, and thereby extend their lifetime and reduce the need for costly repairs?

That potential is now possible according to researchers at the University of Pittsburgh Swanson School of Engineering, who have developed computational models to design a new polymer gel that would enable complex materials to regenerate themselves. The article, "Harnessing Interfacially-Active Nanorods to Regenerate Severed Polymer Gels" (DOI: 10.1021/nl403855k), was published November 19 in the American Chemical Society journal Nano Letters.

Principal investigator is Anna C. Balazs, PhD, the Swanson School's Distinguished Robert v. d. Luft Professor of chemical and petroleum engineering, and co-authors are Xin Yong, PhD, postdoctoral associate, who is the article's lead author; Olga Kuksenok, PhD, research associate professor; and Krzysztof Matyjaszewski, PhD, J.C. Warner University Professor of Natural Sciences, department of chemistry at Carnegie Mellon University.

"This is one of the holy grails of materials science," noted Dr. Balazs. "While others have developed materials that can mend small defects, there is no published research regarding systems that can regenerate bulk sections of a severed material. This has a tremendous impact on sustainability because you could potentially extend the lifetime of a material by giving it the ability to regrow when damaged."

The research team was inspired by biological processes in species such as amphibians, which can regenerate severed limbs. This type of tissue regeneration is guided by three critical instruction sets – initiation, propagation, and termination – which Dr. Balazs describes as a "beautiful dynamic cascade" of biological events.

"When we looked at the biological processes behind tissue regeneration in amphibians, we considered how we would replicate that dynamic cascade within a synthetic material," Dr. Balazs said. "We needed to develop a system that first would sense the removal of material and initiate regrowth, then propagate that growth until the material reached the desired size and then, self-terminate the process."

"Our biggest challenge was to address the transport issue within a synthetic material," Dr. Balazs said. "Biological organisms have circulatory systems to achieve mass transport of materials like blood cells, nutrients and genetic material. Synthetic materials don't inherently possess such a system, so we needed something that acted like a sensor to initiate and control the process."

The team developed a hybrid material of nanorods embedded in a polymer gel, which is surrounded by a solution containing monomers and cross-linkers (molecules that link one polymer chain to another) in order to replicate the dynamic cascade. When part of the gel is severed, the nanorods near the cut act as sensors and migrate to the new interface. The functionalized chains or "skirts" on one end of these nanorods keeps them localized at the interface and the sites (or "initiators") along the rod's surface trigger a polymerization reaction with the monomer and cross-linkers in the outer solution. Drs. Yong and Kuksenok developed the computational models, and thereby established guidelines to control the process so that the new gel behaves and appears like the gel it replaced, and to terminate the reaction so that the material would not grow out of control.

Drs. Balazs, Kuksenok and Yong also credit Krzysztof Matyjaszewski, who contributed toward the understanding of the chemistry behind the polymerization process. "Our collaboration with Prof. Matyjaszewski was exceptionally valuable in allowing us to accurately account for all the complex chemical reactions involved in the regeneration processes" said Dr. Kuksenok.

"The most beautiful yet challenging part was designing the nanorods to serve multiple roles," Dr. Yong said. "In effect, they provide the perfect vehicle to trigger a synthetic dynamic cascade." The nanorods are approximately ten nanometers in thickness, about 10,000 times smaller than the diameter of a human hair.

In the future, the researchers plan to improve the process and strengthen the bonds between the old and newly formed gels, and for this they were inspired by another nature metaphor, the giant sequoia tree. "One sequoia tree will have a shallow root system, but when they grow in numbers, the root systems intertwine to provide support and contribute to their tremendous growth," Dr. Balazs explains. Similarly, the skirts on the nanorods can provide additional strength to the regenerated material.

The next generation of research would further optimize the process to grow multiple layers, creating more complex materials with multiple functions.



INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Large study shows pollution impact on coral reefs -- and offers solution

2013-11-26
Large study shows pollution impact on coral reefs -- and offers solution CORVALLIS, Ore. – One of the largest and longest experiments ever done to test the impact of nutrient loading on coral reefs today confirmed what scientists have long ...

ADHD linked to social and economic disadvantage

2013-11-26
ADHD linked to social and economic disadvantage Scientists have found evidence of a link between social and economic status and childhood attention deficit disorder in the UK Scientists have found evidence of a link between social and economic status and ...

Implantable slimming aid

2013-11-26
Implantable slimming aid Gene network regulates blood-fat levels Humankind has a weight problem – and not only in the industrialised nations, either: the growing prosperity in many Asian or Latin American countries goes hand in hand with a way of life that ...

Seahorse heads have a 'no wake zone' that's made for catching prey

2013-11-26
Seahorse heads have a 'no wake zone' that's made for catching prey

A gene mutation for excessive alcohol drinking found

2013-11-26
A gene mutation for excessive alcohol drinking found UK researchers have discovered a gene that regulates alcohol consumption and when faulty can cause excessive drinking. They have also identified the mechanism underlying this phenomenon. The study showed ...

Protective effects of dl-3n-butylphthalide against diffuse brain injury

2013-11-26
Protective effects of dl-3n-butylphthalide against diffuse brain injury Dl-3n-butylphthalide can effectively treat cerebral ischemia; however, the mechanisms underlying the effects of dl-3n-butylphthalide on microcirculation disorders following diffuse brain injury ...

Why do stroke patients show poor limb motor function recovery?

2013-11-26
Why do stroke patients show poor limb motor function recovery? Negative motor evoked potentials after cerebral infarction, indicative of poor recovery of limb motor function, tend to be accompanied by changes in fractional anisotropy values and the cerebral peduncle ...

An abnormal resting-state functional brain network indicates progression towards AD

2013-11-26
An abnormal resting-state functional brain network indicates progression towards AD Although we know that mild cognitive impairment is a transitional stage between normal aging and Alzheimer's disease, changes in brain networks during this transformation have ...

Flower power

2013-11-26
Flower power Researchers breed new varieties of chamomile Chamomile is a medicinal plant used mainly in the treatment of stomach and intestinal diseases, including the field of veterinary medicine. Agricultural scientist Bettina ...

Researchers have a nose for how probiotics could affect hay fever

2013-11-26
Researchers have a nose for how probiotics could affect hay fever A study has shown that a daily probiotic drink changed how cells lining the nasal passages of hay fever sufferers reacted to a single out-of-season challenge. However, it did not ...

LAST 30 PRESS RELEASES:

Mini lung organoids made in bulk could help test personalized cancer treatments

New guideline on pre-exposure and postexposure HIV prevention

“Lung cancer should no longer be defined by fear and stigma,” experts say

Palliative care for adolescents and young adults with cancer

Cu (100) grain boundaries are key to efficient CO electroreduction on commercial copper

Cobalt-induced asymmetric electron distribution boosts photocatalytic hydrogen production efficiency

Ultra-low doping 0.1(PtMnFeCoNi)/TiO2 catalysts: Modulating the electronic states of active metal sites to enhance CO oxidation through high entropy strategy

Clinical use of nitrous oxide could help treat depression, major study shows

Report reveals potential of AI to help Higher Education sector assess its research more efficiently and fairly

Corporate social responsibility acts as an insurance policy when companies cut jobs and benefits during the times of crisis

Study finds gender gap in knee injuries

First ‘Bible map’ published 500 years ago still influences how we think about borders

Why metabolism matters in Fanconi anemia

Caribbean rainfall driven by shifting long-term patterns in the Atlantic high-pressure system, study finds

Potential treatment to bypass resistance in deadly childhood cancer

RSV vaccines could offer protection against asthma

Group 13 elements: the lucky number for sustainable redox agents?

Africa’s forests have switched from absorbing to emitting carbon, new study finds

Scientists develop plastics that can break down, tackling pollution

What is that dog taking? CBD supplements could make dogs less aggressive over time, study finds

Reducing human effort in rating software

Robots that rethink: A SMU project on self-adaptive embodied AI

Collaborating for improved governance

The 'black box' of nursing talent’s ebb and flow

Leading global tax research from Singapore: The strategic partnership between SMU and the Tax Academy of Singapore

SMU and South Korea to create seminal AI deepfake detection tool

Strengthening international scientific collaboration: Diamond to host SESAME delegation from Jordan

Air pollution may reduce health benefits of exercise

Ancient DNA reveals a North African origin and late dispersal of domestic cats

Inhibiting a master regulator of aging regenerates joint cartilage in mice

[Press-News.org] Polymer gel, heal thyself: University of Pittsburgh engineering team proposes new composites that can regenerate when damaged