PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Difficult dance steps: Team learns how membrane transporter moves

2013-12-02
(Press-News.org) Contact information: Diana Yates
diya@illinois.edu
217-333-5802
University of Illinois at Urbana-Champaign
Difficult dance steps: Team learns how membrane transporter moves

CHAMPAIGN, Ill. — Researchers have tried for decades to understand the undulations and gyrations that allow transport proteins to shuttle molecules from one side of a cell membrane to the other. Now scientists report that they have found a way to penetrate the mystery. They have worked out every step in the molecular dance that enables one such transporter to do its job.

The new findings, reported in the Proceedings of the National Academy of Sciences, will help scientists figure out how other transporters work. The work also offers new insights into multi-drug-resistant (MDR) cancers, some of which use these transporters to export cancer-killing drugs. (Watch a video about the research that includes an animation of the transport protein in action.)

The transporter in the study, MsbA, belongs to an ancient family of proteins that carry large molecules across membranes. It is the bacterial version of a transporter in human cells (called p-glycoprotein) that helps pump drugs out of the cell, said Emad Tajkhorshid, a University of Illinois professor of biochemistry and of pharmacology who led the research. P-glycoprotein is overexpressed in some cancer cells, helping the cells eject drugs meant to kill them.

"There is a lot of research going on in pharmaceutical companies trying to find an inhibitor of p-glycoprotein," Tajkhorshid said. "If we can understand the transport cycle, we have a much larger repertoire of structures for rational drug design."

Research on large, membrane-bound proteins like MsbA has always been problematic because they are not easy to crystallize (a common technique for determining a protein's three-dimensional shape) and each crystal structure reflects only one of the many conformations these shape-shifting proteins undergo, Tajkhorshid said.

"If you want to design a drug for a protein usually you look at the structure and see how you can design a molecule that binds to a particular conformation," he said. Knowing all the different conformations a protein adopts will offer more targets for drug design, he said.

Before this study, researchers had to guess at the changes that occurred between the transporter's inward-facing (open to the cell interior) and outward-facing (open to the cell exterior) states, the only two known conformations. Rather than guessing, Tajkhorshid and his co-author, postdoctoral researcher Mahmoud Moradi, took a more painstaking, but ultimately more fruitful, approach. They used molecular dynamics simulations to look at many potential pathways leading from one conformation to the other, simulating individual steps in the transport cycle in atomic-level detail. Then they measured the energetics of each step to discover which steps required the least work, and thus were most likely to occur.

"The main thing that was new here was trying many pathways and using what we call non-equilibrium work – how much work it takes to walk that path – to judge the quality of the pathway," Tajkhorshid said.

Their simulations included every atom in the protein, the adjoining membrane and the surrounding water molecules – about 250,000 atoms in all, the researchers said.

"It took us many months to search as many possible paths as we could imagine connecting the two end states," Tajkhorshid said. "And when we did that we slowly realized that we could discover much better pathways" than those that had been proposed before. The result was what the researchers call a "minimum work path" leading from one known protein configuration to the other.

The research indicates that MsbA has components in its interior that are locked together as long as the transporter remains open to the cell's interior. A series of random undulations gradually lead this middle section to twist, unlocking those components and allowing other changes that eventually open the protein to the outside of the cell.

"We call it a doorknob mechanism," Tajkhorshid said. "It's locked, so you have to twist it first before you open it."

The new approach will aid other studies of complex protein transporters whose behavior has baffled researchers, Tajkhorshid said.

"This is the first time that we are characterizing a very complex structural transition at atomic-level resolution for a large protein," he said.



INFORMATION:



Tajkhorshid is an affiliate of the Beckman Institute for Advanced Science and Technology at the U. of I.

The National Institutes of Health (grants U54-GM087519, R01-GM086749 and P41-GM104601) supported this research.

Editor's note: To reach Emad Tajkhorshid (pronounced uh-MOD tazh-CORE-shid), call 217-244-6914; email tajkhors@illinois.edu.

The paper, "Mechanistic Picture for Conformational Transition of a Membrane Transporter at Atomic Resolution," is available online or from the U. of I. News Bureau.



ELSE PRESS RELEASES FROM THIS DATE:

Head out to the ski slopes, for happiness' sake

2013-12-02
Head out to the ski slopes, for happiness' sake Study says even 1-off skiing trips can give you a valuable boost in pleasure and well-being Are you contemplating a skiing holiday? The all-out pleasure and enjoyment you experience on a pair of skis or a snowboard is positively ...

Process holds promise for production of synthetic gasoline

2013-12-02
Process holds promise for production of synthetic gasoline A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products ...

Scientists discover that short-term energy deficits increase factors related to muscle degradation

2013-12-02
Scientists discover that short-term energy deficits increase factors related to muscle degradation New research in The FASEB Journal suggests that a high protein diet suppresses protein breakdown by slowing the activity of the ubiquitin ...

Division of labor in the test tube

2013-12-02
Division of labor in the test tube Bacteria grow faster if they feed each other This news release is available in German. The division of labor is more efficient than a struggle through life without help from others – this is also true ...

Amplifying our vision of the infinitely small

2013-12-02
Amplifying our vision of the infinitely small Discovery by Richard Martel and his team on Raman signals published in Nature Photonics Richard Martel and his research team at the Department of Chemistry of the Université de Montréal have discovered a method ...

Study shows reforestation in Lower Mississippi Valley reduces sediment

2013-12-02
Study shows reforestation in Lower Mississippi Valley reduces sediment A modeling study by U.S. Forest Service researchers shows that reforesting the Lower Mississippi Alluvial Valley can significantly reduce runoff from agricultural lands ...

New algorithm finds you, even in untagged photos

2013-12-02
New algorithm finds you, even in untagged photos TORONTO, ON – A new algorithm designed at the University of Toronto has the power to profoundly change the way we find photos among the billions on social media sites such as Facebook and Flickr. This month, ...

New UK study suggests low vitamin D causes damage to brain

2013-12-02
New UK study suggests low vitamin D causes damage to brain LEXINGTON, Ky. (Dec. 2, 2013) — A new study led by University of Kentucky researchers suggests that a diet low in vitamin D causes damage to the brain. In addition to being essential for maintaining bone ...

Can big cats co-exist? Study challenges lion threat to cheetah cubs

2013-12-02
Can big cats co-exist? Study challenges lion threat to cheetah cubs New research into cheetah cub survival has refuted the theory that lions are a cub's main predator and that big cats cannot coexist in conservation areas. The study, published in the Journal of Zoology, ...

A method to predict Alzheimer's disease within 2 years of screening

2013-12-02
A method to predict Alzheimer's disease within 2 years of screening This news release is available in French. At the first signs of memory loss, most people start worrying and wonder, "What if I have Alzheimer's disease?" And yet, the disease ...

LAST 30 PRESS RELEASES:

Tracing the quick synthesis of an industrially important catalyst

New software sheds light on cancer’s hidden genetic networks

UT Health San Antonio awarded $3 million in CPRIT grants to bolster cancer research and prevention efforts in South Texas

Third symposium spotlights global challenge of new contaminants in China’s fight against pollution

From straw to soil harmony: International team reveals how biochar supercharges carbon-smart farming

Myeloma: How AI is redrawing the map of cancer care

Manhattan E. Charurat, Ph.D., MHS invested as the Homer and Martha Gudelsky Distinguished Professor in Medicine at the University of Maryland School of Medicine

Insilico Medicine’s Pharma.AI Q4 Winter Launch Recap: Revolutionizing drug discovery with cutting-edge AI innovations, accelerating the path to pharmaceutical superintelligence

Nanoplastics have diet-dependent impacts on digestive system health

Brain neuron death occurs throughout life and increases with age, a natural human protein drug may halt neuron death in Alzheimer’s disease

SPIE and CLP announce the recipients of the 2025 Advanced Photonics Young Innovator Award

Lessons from the Caldor Fire’s Christmas Valley ‘Miracle’

Ant societies rose by trading individual protection for collective power

Research reveals how ancient viral DNA shapes early embryonic development

A molecular gatekeeper that controls protein synthesis

New ‘cloaking device’ concept to shield sensitive tech from magnetic fields

Researchers show impact of mountain building and climate change on alpine biodiversity

Study models the transition from Neanderthals to modern humans in Europe

University of Phoenix College of Doctoral Studies releases white paper on AI-driven skilling to reduce burnout and restore worker autonomy

AIs fail at the game of visual “telephone”

The levers for a sustainable food system

Potential changes in US homelessness by ending federal support for housing first programs

Vulnerability of large language models to prompt injection when providing medical advice

Researchers develop new system for high-energy-density, long-life, multi-electron transfer bromine-based flow batteries

Ending federal support for housing first programs could increase U.S. homelessness by 5% in one year, new JAMA study finds

New research uncovers molecular ‘safety switch’ shielding cancers from immune attack

Bacteria resisting viral infection can still sink carbon to ocean floor

Younger biological age may increase depression risk in older women during COVID-19

Bharat Innovates 2026 National Basecamp Showcases India’s Most Promising Deep-Tech Ventures

Here’s what determines whether your income level rises or falls

[Press-News.org] Difficult dance steps: Team learns how membrane transporter moves