(Press-News.org) Washington, D.C. (November 9, 2010) -- Microscopically porous polymer membranes have numerous applications in microfluidics, where they can act as filters, masks for surface patterning, and even as components in 3D devices in which the perforations in stacked membranes are aligned to form networks of channels for the flow of fluids.
In the AIP journal Biomicrofluidics, Hongkai Wu, a chemist at Hong Kong University of Science and Technology, and his colleagues describe a simple new method using just one photolithographic step to fabricate free-standing polymer membranes with neatly patterned holes as small as 10 microns in diameter.
The researchers start by designing the desired pattern on a computer and printing it on a transparency (for holes larger than 20 microns in diameter) or a chrome mask (for those smaller than 20 microns). "Then," Wu says, "we place two spacers on a flat substrate and between them add a few drops of a prepolymer" -- a molecule that can form into a polymer. The prepolymer is covered with the mask, which is pressed down onto the spacers; ultraviolet light is then used to cure the membrane. The mask is then removed to reveal the free-standing, perforated membrane.
"Because our technique can fabricate membranes of pores with accurate sizes and in arbitrary shapes and sizes, and the fabrication is very easy and fast, we expect them to have many potential applications in different fields," says Wu. "These membranes can be directly used as masks to pattern inorganic, organic, and biological materials like proteins and cells, on various surfaces," he says.
"One important application of the membrane is that it makes it very simple to fabricate 3D microfluidic structures with channels running up and down through the membrane, which are difficult to make otherwise."
INFORMATION:
The Article, "Fabrication of freestanding, microperforated membranes and their applications in microfluidics" by Yizhe Zheng, Wen Dai, Declan Ryan, and Hongkai Wu appears in the journal Biomicrofluidics. See: http://link.aip.org/link/biomgb/v4/i3/p036504/s1
Journalists may request a free PDF of this article by contacting jbardi@aip.org
ABOUT BIOMICROFLUIDICS
Biomicrofluidics is an online open-access journal published by the American Institute of Physics to rapidly disseminate research in elucidating fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See: http://bmf.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.
Washington, D.C. (November 9, 2010) -- Researchers at the University of Maryland have proposed a scheme for detecting a concealed source of radioactive material without searching containers one by one. Detection of radioactive material concealed in shipping containers is important in the early prevention of "dirty" bomb construction. The concept, described in the Journal of Applied Physics, is based on the gamma-ray emission from the radioactive material that would pass through the shipping container walls and ionize the surrounding air.
The facilitated breakdown of ...
Washington, D.C. (November 9, 2010) -- Walk into nearly any science museum worth its salt and you're likely to see a Foucault pendulum, a simple but impressive device for observing the Earth's rotation. Such pendulums have been around for more than 150 years, and little about how they work remains a mystery today.
The only problem, according to Argentinean researcher Horacio Salva, is that the devices are generally large and unwieldy, making them impractical to install in places where space is at a premium. This limitation was something he and his colleagues at the Centro ...
At the current pace of research and development, global oil will run
out 90 years before replacement technologies are ready, says a new
University of California, Davis, study based on stock market
expectations.
The forecast was published online Monday (Nov. 8) in the journal
Environmental Science & Technology. It is based on the theory that
long-term investors are good predictors of whether and when new
energy technologies will become commonplace.
"Our results suggest it will take a long time before renewable
replacement fuels can be self-sustaining, at least ...
A team of international researchers led by ancient DNA experts from the University of Adelaide has resolved the longstanding issue of the origins of the people who introduced farming to Europe some 8000 years ago.
A detailed genetic study of one of the first farming communities in Europe, from central Germany, reveals marked similarities with populations living in the Ancient Near East (modern-day Turkey, Iraq and other countries) rather than those from Europe.
Project leader Professor Alan Cooper, Director of the Australian Centre for Ancient DNA (ACAD) at the University ...
Astronomers at The University of Warwick and the University of Sheffield have helped discover an unusual star system which looks like, and may even once have behaved like, a game of snooker.
The University of Warwick and Sheffield astronomers played a key role in an international team that used two decades of observations from many telescopes around the world. The UK astronomers helped discover this "snooker like" star system through observations and analysis of data from an astronomical camera known as ULTRACAM designed by the British researchers on the team.
They ...
Kyoto, Japan -- As if borrowing from a scene in a science fiction movie, researchers at Kyoto University have successfully developed a kind of tractor beam that can be used to manipulate the network of the molecules. In a paper soon to be published in Physical Review Letters, the team has demonstrated a technique using terahertz pulses that could have broad applications in the chemical and pharmaceutical industries.
Terahertz waves, an area of specialty for the Koichiro Tanaka lab at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), exist in ...
A recommendation letter could be the chute in a woman's career ladder, according to ongoing research at Rice University. The comprehensive study shows that qualities mentioned in recommendation letters for women differ sharply from those for men, and those differences may be costing women jobs and promotions in academia and medicine.
Funded by the National Science Foundation, Rice University professors Michelle Hebl and Randi Martin and graduate student Juan Madera, now an assistant professor at the University of Houston, reviewed 624 letters of recommendation for 194 ...
Membrane-associated receptors, channels and transporters are among the most important drug targets for the pharmaceutical industry. The search for new drugs resembles looking for a needle in a haystack. Therefore new analytical techniques are required which facilitate the simultaneous screening of a large library of compounds across a variety of membrane proteins. However, this class of methods is still at the early stages of development. The group of Prof. Dr. Robert Tampé, in collaboration with the Walter Schottky Institute at Technical University Munich, has now presented ...
Quantum computers should be much easier to build than previously thought, because they can still work with a large number of faulty or even missing components, according to a study published today in Physical Review Letters. This surprising discovery brings scientists one step closer to designing and building real-life quantum computing systems – devices that could have enormous potential across a wide range of fields, from drug design, electronics, and even code-breaking.
Scientists have long been fascinated with building computers that work at a quantum level – so small ...
VIDEO:
This is a computer model of the growth of a snapdragon flower, produced by the groups of Professor Andrew Bangham of the University of East Anglia and Professor Enrico Coen...
Click here for more information.
"How do hearts, wings or flowers get their shape?" asks Professor Enrico Coen from the John Innes Centre. " Unlike man-made things like mobile phones or cars, there is no external hand or machine guiding the formation of these biological structures; they ...