(Press-News.org) Contact information: James Bauer
Bauer.362@osu.edu
614-292-3706
Ohio State University
Industrial age helps some coastal regions capture carbon dioxide
Researchers assert coastal ocean is an important component of global carbon cycle
COLUMBUS, Ohio – Coastal portions of the world's oceans, once believed to be a source of carbon dioxide (CO2) to the atmosphere, are now thought to absorb as much as two-thirds more carbon than they emitted in the preindustrial age, researchers estimate.
These coastal areas, which now appear to operate as one of the several types of so-called carbon "sinks," may help moderate global warming by absorbing carbon dioxide, counteracting some of the CO2 released into the atmosphere by human activities. Scientists refer to the extensive shallow waters between land and open oceans as the "coastal ocean."
That shift of the coastal ocean from carbon source to sink, quantified for the first time in the Dec. 5, 2013, issue of the journal Nature, suggests coastal areas are a key component of the global carbon budget, the scientists say.
"Compared to the open ocean, we know less about the coastal ocean's carbon cycle even though it's right in front of us," said James Bauer, professor of evolution, ecology and organismal biology in Ohio State University's College of Arts and Sciences and lead author of the paper.
"There is an intense need for more research because we don't currently have the data to know exactly what's going on everywhere," he said. "The methods are there now that weren't available 50 years ago. We just have to commit to increasing the number and types of coastal regions being studied."
Prior to the industrial age, decomposing plant materials in coastal waters and sediments likely led to the release of carbon dioxide. The Nature paper suggests that microscopic plant growth in coastal areas, fueled by fertilizer runoff, is now leading to greater uptake of CO2. It also suggests that the atmospheric buildup of carbon dioxide caused by the burning of fossil fuels is further contributing to this uptake of CO2 by coastal waters.
New instrumentation allows scientists to generate new best estimates of carbon cycling in coastal areas. Using the latest measures available, Bauer and colleagues created a model estimating that coastal areas released, on average, about 150 million metric tons of carbon per year a century ago. Now, these same waters are estimated to absorb approximately 250 million metric tons of carbon each year.
"Some coastal oceans are still emitting carbon dioxide, so this is a global average and our best estimate of how they're behaving as a whole around the earth if we add them up based on our current knowledge base," he said. "To discern a large-scale switch like this on a global scale is fairly unusual."
Bauer also noted that for the first time, the Intergovernmental Panel on Climate Change (IPCC) is expected to acknowledge the importance of coastal waters to the global carbon cycle in its next report, due out in early 2014. The IPCC's 2007 report and other analyses of the global carbon cycle have largely neglected to take coastal oceans into account, he said.
"When we're counting every ton of CO2 that we're putting into the atmosphere, every additional sink is an important one to identify," he said.
The capture and release of carbon dioxide is difficult to study in coastal systems because of their diverse and variable nature. Coastal areas also represent an enormous part of the global landscape: The current length of all coastlines could wrap around Earth 41 times.
"The coastline represents a huge linear interface between land and the open ocean, and is very important in the transfer of nutrients and carbon between the two," said Bauer, also a faculty member in Ohio State's Environmental Sciences Graduate Program.
The scientists detailed their best effort to come up with estimates of carbon cycling in three subsets of coastal areas: those dominated by river outlets, others consisting of filtering estuaries and bays, and the continental shelf – any coastal water reaching a depth of about 200 meters or fewer. The researchers used what little evidence was available about the preindustrial age to develop a likely scenario for the coastal ocean at that time.
In broad terms, coastal waters were primarily full of decomposing plant materials 100 years ago, which suggests that the coastal ocean of that era released carbon dioxide to the atmosphere.
With the human activity associated with industrialization, however, came the burning of fossil fuels for manufacturing and transportation, putting more carbon dioxide into the air and creating an increased pressure of this gas on some regions of the earth's surface – including coastal areas. Following World War II, manufacturers also began producing vast quantities of agricultural fertilizers containing nitrogen and phosphorous – and about 95 percent of these nutrients run off into rivers and are flushed into coastal waters. There, these elements stimulate microscopic plant production, which draws carbon dioxide into the water to aid in plant growth.
"The evidence suggests that human activities in coastal zones will continue to have an important impact on global carbon cycling," Bauer said. "It's a tricky area of study, but omitting the coastal ocean from the overall carbon budget leaves a gap in projections for future atmospheric CO2 levels."
###
This work was supported in part by the National Science Foundation's Chemical and Biological Oceanography, Integrated Carbon Cycle Research, Arctic Natural Sciences, Long-Term Ecological Research, and Ecosystem Ecology programs; NASA's Interdisciplinary Research in Earth Science program; the National Oceanic and Atmospheric Administration; Georgia Sea Grant; the European Union's Seventh Framework Program project GEOCARBON; and the government of the Brussels-Capital Region.
Co-authors of the paper include Wei-Jun Cai of the University of Delaware; Peter Raymond of Yale University; Thomas Bianchi of the University of Florida; Charles Hopkinson of the University of Georgia; and Pierre Regnier of the Université Libre de Bruxelles in Belgium.
Industrial age helps some coastal regions capture carbon dioxide
Researchers assert coastal ocean is an important component of global carbon cycle
2013-12-05
ELSE PRESS RELEASES FROM THIS DATE:
Research & development for diseases of the poor: A 10-year analysis of impact of the DNDi model
2013-12-05
Research & development for diseases of the poor: A 10-year analysis of impact of the DNDi model
Report provides real and estimated costs of repurposing drugs and new chemical entities, evoking the lessons learned based on alternative ...
Sound protection standards for secret spaces may be insufficient
2013-12-05
Sound protection standards for secret spaces may be insufficient
Facilities that meet DOD-approved soundproof specs may not protect against audio snooping
SAN FRANCISCO, Nov. 27, 2013 – What's the best place to conduct a conversation about a confidential or ...
LSUHSC research finds inflammation linked to obesity in adults may be protective in young children
2013-12-05
LSUHSC research finds inflammation linked to obesity in adults may be protective in young children
Study increases understanding of the development of obesity and insulin resistance
New Orleans, LA – The first study of its kind, led by Melinda ...
World Stem Cell Report 2013 highlights expert opinion and state-of-the-art science
2013-12-05
World Stem Cell Report 2013 highlights expert opinion and state-of-the-art science
New Rochelle, NY, December 4, 2013–Mary Ann Liebert, Inc., publishers announced the publication of the World Stem Cell Report 2013, a special supplement ...
Coastal sea change
2013-12-05
Coastal sea change
UD oceanographer reports on human-caused changes to carbon cycling
Carbon dioxide pumped into the air since the Industrial Revolution appears to have changed the way the coastal ocean functions, according to a new analysis published this ...
Sea-level rise to drive coastal flooding, regardless of changes in hurricane activity
2013-12-05
Sea-level rise to drive coastal flooding, regardless of changes in hurricane activity
Review of studies show that sea-level rise, shoreline retreat will drive storm-related flooding
Clamor about whether climate change will cause increasingly destructive tropical storms may be overshadowing ...
In the case of wholesale food distributors, it's all about location
2013-12-05
In the case of wholesale food distributors, it's all about location
In all but the shortest supply chains, food travels through wholesale distribution centers on its way from farm to consumer, and the location of these distributors can have a big impact on the efficiency of ...
A blast from its past dates the youngest neutron-star binary
2013-12-05
A blast from its past dates the youngest neutron-star binary
UCSB researcher finds origin of inherited gene mutation causing early-onset Alzheimer's
2013-12-05
UCSB researcher finds origin of inherited gene mutation causing early-onset Alzheimer's
UCSB researcher tracks source to a single founder dating from early Habsburg Spain
(Santa Barbara, Calif.) —The age and origin of the E280A gene mutation responsible ...
Not in the mood but want to be? New studies bring women hope
2013-12-05
Not in the mood but want to be? New studies bring women hope
CLEVELAND, Ohio (December 4, 2013)—For women, passing midlife can deal a blow to their sex drive. But two new studies just published online in Menopause, the journal ...
LAST 30 PRESS RELEASES:
Innovative oncolytic virus and immunotherapy combinations pave the way for advanced cancer treatment
New insights into energy metabolism and immune dynamics could transform head and neck cancer treatment
Pennington Biomedical’s Dr. Steven Heymsfield named LSU Boyd Professor – LSU’s highest faculty honor
Study prompts new theory of human-machine communication
New method calculates rate of gene expression to understand cell fate
Researchers quantify rate of essential evolutionary process in the ocean
Innovation Crossroads companies join forces, awarded U.S. Air Force contract
Using new blood biomarkers, USC researchers find Alzheimer’s disease trial eligibility differs among various populations
Pioneering advances in in vivo CAR T cell production
Natural medicines target tumor vascular microenvironment to inhibit cancer growth
Coral-inspired pill offers a new window into the hidden world of the gut
nTIDE September2025 Jobs Report: Employment for people with disabilities surpasses prior high
When getting a job makes you go hungry
Good vibrations could revolutionize assisted reproductive technology
More scrutiny of domestic fishing fleets at ports could help deter illegal fishing
Scientists transform plastic waste into efficient CO2 capture materials
Discovery of North America’s role in Asia’s monsoons offers new insights into climate change
MD Anderson and Phoenix SENOLYTIX announce strategic cross-licensing agreement to enhance inducible switch technologies for cell and gene therapies
Researchers discover massive geo-hydrogen source to the west of the Mussau Trench
Even untouched ecosystems are losing insects at alarming rates, new study finds
Adaptive visible-infrared camouflage with wide-range radiation control for extreme ambient temperatures
MD Anderson research highlights for September 5, 2025
Physicists create a new kind of time crystal that humans can actually see
Reminder: Final media invitation for EPSC-DPS2025 and details of media briefings on RAMSES and Juno missions
Understanding orderly and disorderly behavior in 2D nanomaterials could enable bespoke design, tailored by AI
JAMA Network launches JAMA+ Women's Health
Surface plasmon driven atomic migration mediated by molecular monolayer
ERC Starting Grant for five University of Groningen scientists
AI turns printer into a partner in tissue engineering
What climate change means for the Mediterranean Sea
[Press-News.org] Industrial age helps some coastal regions capture carbon dioxideResearchers assert coastal ocean is an important component of global carbon cycle