(Press-News.org) Contact information: Terry Collins
tc@tca.tc
416-538-8712
Katie Pratt
katie_pratt@mail.uri.edu
401-536-8813
Deep Carbon Observatory
Deep Carbon Observatory scientists discover quick recipe for producing hydrogen
New formula for fast, abundant H2 production may help power fuel cells, helps explain expansive chemical-eating microbial communities of the deep
Scientists in Lyon, a French city famed for its cuisine, have discovered a quick-cook recipe for copious volumes of hydrogen (H2).
The breakthrough suggests a better way of producing the hydrogen that propels rockets and energizes battery-like fuel cells. In a few decades, it could even help the world meet key energy needs — without carbon emissions contributing to the greenhouse effect and climate change.
It also has profound implications for the abundance and distribution of life, helping to explain the astonishingly widespread microbial communities that dine on hydrogen deep beneath the continents and seafloor.
Describing how to greatly speed up nature's process for producing hydrogen will be a highlight among many presentations by Deep Carbon Observatory (DCO) experts at the American Geophysical Union's annual Fall Meeting in San Francisco Dec. 9 to 13.
The DCO is a global, 10-year international science collaboration unraveling the mysteries of Earth's inner workings — deep life, energy, chemistry, and fluid movements.
Muriel Andreani, Isabelle Daniel, and Marion Pollet-Villard of University Claude Bernard Lyon 1 discovered the quick recipe for producing hydrogen:
In a microscopic high-pressure cooker called a diamond anvil cell (within a tiny space about as wide as a pencil lead), combine ingredients: aluminum oxide, water, and the mineral olivine. Set at 200 to 300 degrees Celsius and 2 kilobars pressure — comparable to conditions found at twice the depth of the deepest ocean. Cook for 24 hours. And voilà.
Dr. Daniel, a DCO leader, explains that scientists have long known nature's way of producing hydrogen. When water meets the ubiquitous mineral olivine under pressure, the rock reacts with oxygen (O) atoms from the H2O, transforming olivine into another mineral, serpentine — characterized by a scaly, green-brown surface appearance like snake skin. Olivine is a common yellow to yellow-green mineral made of magnesium, iron, silicon, and oxygen.
The process also leaves hydrogen (H2) molecules divorced from their marriage with oxygen atoms in water.
The novelty in the discovery, quietly published in a summer edition of the journal American Mineralogist, is how aluminum profoundly accelerates and impacts the process.
Finding the reaction completed in the diamond-enclosed micro space overnight, instead of over months as expected, left the scientists amazed. The experiments produced H2 some 7 to 50 times faster than the natural "serpentinization" of olivine.
Over decades, many teams looking to achieve this same quick hydrogen result focused mainly on the role of iron within the olivine, Dr. Andreani says. Introducing aluminum into the hot, high-pressure mix produced the eureka moment.
Dr. Daniel notes that aluminum is Earth's 5th most abundant element and usually is present, therefore, in the natural serpentinization process. The experiment introduced a quantity of aluminum unrealistic in nature.
Jesse Ausubel, of The Rockefeller University and a founder of the DCO program, says current methods for commercial hydrogen production for fuel cells or to power rockets "usually involve the conversion of methane (CH4), a process that produces the greenhouse gas carbon dioxide (CO2) as a byproduct. Alternatively, we can split water molecules at temperatures of 850 degrees Celsius or more — and thus need lots of energy and extra careful engineering."
"Aluminum's ability to catalyze hydrogen production at a much lower temperature could make an enormous difference. The cost and risk of the process would drop a lot."
"Scaling this up to meet global energy needs in a carbon-free way would probably require 50 years," he adds. "But a growing market for hydrogen in fuel cells could help pull the process into the market."
"We still need to solve problems for a hydrogen economy, such as storing the hydrogen efficiently as a gas in compact containers, or optimizing methods to turn it into a metal, as pioneered by Russell Hemley of the Carnegie Institution's Geophysical Laboratory, another co-founder of the DCO."
Deep energy, Dr. Hemley notes, is typically thought of in terms of geothermal energy available from heat deep within Earth, as well as subterranean fluids that can be burned for energy, such as methane and petroleum. What may strike some as new is that there is also chemical energy in the form of hydrogen produced by serpentinization.
At the time of the AGU Fall Meetings, Dr. Andreani will be taking a lead role with Javier Escartin of the Centre National de la Recherche Scientifique in a 40-member international scientific exploration of fault lines along the Mid-Atlantic Ridge. It is a place where the African and American continents continue to separate at an annual rate of about 20 mm (1.5 inches) and rock is forced up from the mantle only 4 to 6 km (2.5 to 3.7 miles) below the thin ocean floor crust. The study will advance several DCO goals, including the mapping of world regions where deep life-supporting H2 is released through serpentinization.
Aboard the French vessel Pourquoi Pas?, using a deep sea robot from the French Research Institute for Exploitation of the Sea (IFREMER), and a deep-sea vehicle from Germany's Leibniz Institute of Marine Sciences (GEOMAR), the team includes researchers from France, Germany, USA, Wales, Spain, Norway and Greece (more information: odemar.weebly.com).
Notes Dr. Daniel, until now it has been a scientific mystery how the rock + water + pressure formula produces enough hydrogen to support the chemical-loving microbial and other forms of life abounding in the hostile environments of the deep.
With the results of the experiment in France, "for the first time we understand why and how we have H2 produced at such a fast rate. When you take into account aluminum, you are able to explain the amount of life flourishing on hydrogen," says Dr. Daniel.
Indeed, DCO scientists hypothesize that hydrogen was what fed the earliest life on primordial planet Earth — first life's first food.
And, she adds: "We believe the serpentinization process may be underway on many planetary bodies — notably Mars. The reaction may take one day or one million years but it will occur whenever and wherever there is some water present to react with olivine — one of the most abundant minerals in the solar system."
Enigmatic evidence of a deep subterranean microbe network
Meanwhile, the genetic makeup of Earth's deep microbial life is being revealed through DCO research underway by Matt Schrenk of Michigan State University, head of DCO's "Rock-Hosted Communities" initiative, Tom McCollom of the University of Colorado, Boulder, Steve D'Hondt of the University of Rhode Island, and many other associates.
At AGU, they will report the results of deep sampling from opposite sides of the world, revealing enigmatic evidence of a deep subterranean microbe network.
Using DNA, researchers are finding hydrogen-metabolizing microbes in rock fractures deep beneath the North American and European continents that are highly similar to samples a Princeton University group obtained from deep rock fractures 4 to 5 km (2.5 to 3 miles) down a Johannesburg-area mine shaft. These DNA sequences are also highly similar to those of microbes in the rocky seabeds off the North American northwest and northeastern Japanese coasts.
"Two years ago we had a scant idea about what microbes are present in subsurface rocks or what they eat," says Dr. Schrenk. "Since then a number of studies have vastly expanded that database. We're getting this emerging picture not only of what sort of organisms are found in these systems but some consistency between sites globally — we're seeing the same types of organisms everywhere we look."
"It is easy to understand how birds or fish might be similar oceans apart, but it challenges the imagination to think of nearly identical microbes 16,000 km apart from each other in the cracks of hard rock at extreme depths, pressures, and temperatures" he says.
"In some deep places, such as deep-sea hydrothermal vents, the environment is highly dynamic and promotes prolific biological communities," says Dr. McCollom. "In others, such as the deep fractures, the systems are isolated with a low diversity of microbes capable of surviving such harsh conditions."
"The collection and coupling of microbiological and geochemical data made possible through the Deep Carbon Observatory is helping us understand and describe these phenomena."
How water behaves deep within Earth's mantle
Among other major presentations, DCO investigators will introduce a new model that offers new insights into water / rock interactions at extreme pressures 150 km (93 miles) or more below the surface, well into Earth's upper mantle. To now, most models have been limited to 15 km, one-tenth the depth.
"The DCO gives a happy twist to the phrase 'We are in deep water'," says researcher Dimitri Sverjensky of Johns Hopkins University, Baltimore MD.
Dr. Sverjensky's work, accepted for publication by the Elsevier journal Geochimica et Cosmochimica Acta, is expected to revolutionize understanding of deep Earth water chemistry and its impacts on subsurface processes as diverse as diamond formation, hydrogen accumulation, the transport of diverse carbon-, nitrogen- and sulfur-fed species in the mantle, serpentinization, mantle degassing, and the origin of Earth's atmosphere.
In deep Earth, despite extreme high temperatures and pressures, water is a fluid that circulates and reacts chemically with the rocks through which it passes, changing the minerals in them and undergoing alteration itself — a key agent for transporting carbon and other chemical elements. Understanding what water is like and how it behaves in Earth's deep interior is fundamental to understanding the deep carbon cycle, deep life, and deep energy.
This water-rock interaction produces valuable ore deposits, creates the chemicals on which deep life and deep energy depend, influences the generation of magma that erupts from volcanoes — even the occurrence of earthquakes. Humanity gets glimpses of this water in hot springs.
Says Dr. Sverjensky: "The new model may enable us to predict water-rock interaction well into Earth upper mantle and help visualize where on Earth H2 production might be underway."
The DCO is now in the 5th year of a decade-long adventure to probe Earth's deepest geo-secrets: How much carbon is stored inside Earth? What are the reservoirs of that carbon? How does carbon move among reservoirs? How much carbon released from Earth's deep interior is primordial and how much is recycled from the surface? Are there deep abiotic sources of hydrocarbons? What is the nature and extent of deep microbial life? And did deep Earth chemistry play a role in life's origins?
The $500 million global collaboration is led by Dr. Robert Hazen, Senior Staff Scientist at the Geophysical Laboratory, Carnegie Institution of Washington.
Says Dr. Hazen: "Bringing together experts in microbes, volcanoes, the micro-structure of rocks and minerals, fluid movements, and more is novel. Typically these experts don't connect with each other. Integrating such diversity in a single scientific endeavor is producing insights unavailable until the DCO."
Ninety percent or more of Earth's carbon is thought to be locked away or in motion deep underground, he notes, a hidden dimension of the planet as poorly understood as it is profoundly important to life on the surface.
INFORMATION:
DCO is hosting several events both before and during the AGU Fall Meeting 2013 and a large number of presentations are being given at the by DCO scientists from all four research communities — deep life, deep energy, extreme physics and chemistry, and reservoirs and fluxes (for DCO presentations at AGU).
The Deep Carbon Observatory:
A 10-year global quest to discover the quantity, movements, origins, and forms of Earth's deep carbon; to probe the secrets of volcanoes and diamonds, sources of gas and oil, and life's deep limits and origins; and to report the known, unknown, and unknowable by 2019.
The DCO continues to seek the collaboration and contributions of all scientists interested in the unfolding, and as yet untold, story of carbon in Earth. Conducting expeditions, laboratory experiments, and simulations, we ultimately aim to advance significantly, and perhaps change fundamentally, our understanding of carbon and the role it plays in our lives.
The DCO aims to create legacies of instruments measuring at great depths, temperatures, and pressures; networks sensing fluxes of carbon-containing gases and fluids between the depths and the surface; open access databases about deep carbon; deep carbon researchers integrating geology, physics, chemistry, and biology; insights improving energy systems; and a public more engaged with deep carbon science.
Deep Carbon Observatory Secretariat: Carnegie Institution of Washington
5251 Broad Branch Road, NW, Washington, DC 20015-1305; +1-202-478-8818
info@deepcarbon.net
Water + rock + aluminum oxide + extreme pressure, heat = quick, copious H2
Hydrogen: first life's first food?
DCO scientists marvel at genetic similarity of sub-surface microbes continents apart — a network of life in deep rocks and seabeds? *
First-ever model reveals how water behaves in extreme deep pressures, heat
Deep Carbon Observatory science stars, investigating mysteries of Earth's innermost workings, form large presence at American Geophysical Union meeting, San Francisco, 9-13 December 2013
Deep Carbon Observatory scientists discover quick recipe for producing hydrogen
New formula for fast, abundant H2 production may help power fuel cells, helps explain expansive chemical-eating microbial communities of the deep
2013-12-08
ELSE PRESS RELEASES FROM THIS DATE:
Study: Majority of epilepsy surgery patients enjoy improvement in their physical and social well-being
2013-12-08
Study: Majority of epilepsy surgery patients enjoy improvement in their physical and social well-being
DETROIT – The majority of epilepsy patients who have brain surgery to treat their disorder are satisfied with the results in reducing epilepsy-related seizures ...
Bed bugs can survive freezing temperatures, but cold can still kill them
2013-12-08
Bed bugs can survive freezing temperatures, but cold can still kill them
Exposing bed bug-infested clothing or other small items to freezing temperatures may be a viable control option for people at risk of bed bug infestations. However, a new study ...
Targeted treatment can significantly reduce relapse in children with AML leukemia
2013-12-08
Targeted treatment can significantly reduce relapse in children with AML leukemia
Findings from nationwide study led by Children's Mercy researcher highlighted at American Society of Hematology Meeting
The addition of a monoclonal antibody called gemtuzumab combined ...
New insights into pathophysiology of sickle cell disease and thalassemia may help improve care
2013-12-08
New insights into pathophysiology of sickle cell disease and thalassemia may help improve care
(NEW ORLEANS, December 8, 2013) – New research presented today during the 55th American Society of Hematology Annual Meeting and Exposition ...
Novel drug regimen can improve stem cell transplantation outcomes
2013-12-08
Novel drug regimen can improve stem cell transplantation outcomes
Bortezomib (Velcade) reduces GVHD, boosts survival
NEW ORLEANS— Adding bortezomib (Velcade) to standard preventive therapy for graft-versus-host-disease (GVHD) results in improved ...
Flipping a gene switch reactivates fetal hemoglobin, may reverse sickle cell disease
2013-12-08
Flipping a gene switch reactivates fetal hemoglobin, may reverse sickle cell disease
In lab studies, CHOP researchers reprogram gene expression, showing proof-of-concept for potential therapy
Hematology researchers at The Children's Hospital ...
Survey: Knowledge about HPV vaccine effectiveness lacking
2013-12-08
Survey: Knowledge about HPV vaccine effectiveness lacking
ATLANTA — Knowledge about the efficacy of the human papillomavirus (HPV) vaccine in preventing cervical cancer was lacking in the majority of survey respondents for whom the information ...
Certain genetic alterations may explain head and neck cancer survival disparities
2013-12-08
Certain genetic alterations may explain head and neck cancer survival disparities
ATLANTA — Certain genetic alterations to the PAX gene family may be responsible for survival disparities seen between African-American and non-Latino white men ...
Genetic mutations and molecular alterations may explain racial differences in head and neck cancers
2013-12-08
Genetic mutations and molecular alterations may explain racial differences in head and neck cancers
Study helps explain why 'survival gap' persists for African-Americans
A team of scientists at Johns Hopkins and in Texas has identified a handful of genetic mutations ...
Age shouldn't limit access to transplants for MDS, study suggests
2013-12-08
Age shouldn't limit access to transplants for MDS, study suggests
NEW ORLEANS— Patients with myelodysplastic syndromes (MDS) who were as old as 74 fared as well with stem cell transplantation as did patients in the 60-to-65 age range, according ...
LAST 30 PRESS RELEASES:
New study assesses impact of agricultural research investments on biodiversity, land use
High-precision NEID spectrograph helps confirm first Gaia astrometric planet discovery
ABT-263 treatment rejuvenates aged skin and enhances wound healing
The challenge of pursuit – how saccades enable mammals to simultaneously chase prey and navigate through complex environments
Music can touch the heart, even inside the womb
Contribution of cannabis use disorder to new cases of schizophrenia has almost tripled over the past 17 years
Listening for multiple mental health disorders
Visualization of chemical phenomena in the microscopic world using semiconductor image sensor
Virus that causes COVID-19 increases risk of cardiac events
Half a degree rise in global warming will triple area of Earth too hot for humans
Identifying ED patients likely to have health-related social needs
Yo-yo dieting may significantly increase kidney disease risk in people with type 1 diabetes
Big cities fuel inequality
Financial comfort and prosociality
Painted lady butterflies migrations and genetics
Globetrotting not in the genes
Patient advocates from NCCN guidelines panels share their ‘united by unique’ stories for world cancer day
Innovative apatite nanoparticles for advancing the biocompatibility of implanted biodevices
Study debunks nuclear test misinformation following 2024 Iran earthquake
Quantum machine offers peek into “dance” of cosmic bubbles
How hungry fat cells could someday starve cancer to death
Breakthrough in childhood brain cancer research could heal treatment-resistant tumors, keep them in remission
Research discovery halts childhood brain tumor before it forms
Scientists want to throw a wrench in the gears of cancer’s growth
WSU researcher pioneers new study model with clues to anti-aging
EU awards €5 grant to 18 international researchers in critical raw materials, the “21st century's gold”
FRONTIERS launches dedicated call for early-career science journalists
Why do plants transport energy so efficiently and quickly?
AI boosts employee work experiences
Neurogenetics leader decodes trauma's imprint on the brain through groundbreaking PTSD research
[Press-News.org] Deep Carbon Observatory scientists discover quick recipe for producing hydrogenNew formula for fast, abundant H2 production may help power fuel cells, helps explain expansive chemical-eating microbial communities of the deep