(Press-News.org) Contact information: Steve Koppes
skoppes@uchicago.edu
773-702-8366
University of Chicago
Swirls in remnants of big bang may hold clues to universe's infancy
South Pole Telescope scientists have detected for the first time a subtle distortion in the oldest light in the universe, which may help reveal secrets about the earliest moments in the universe's formation.
The scientists observed twisting patterns in the polarization of the cosmic microwave background—light that last interacted with matter very early in the history of the universe, less than 400,000 years after the big bang. These patterns, known as "B modes," are caused by gravitational lensing, a phenomenon that occurs when the trajectory of light is bent by massive objects, much like a lens focuses light.
Early today, Physics World magazine heralded the result as one of the top 10 physics breakthroughs of 2013.
A multi-institutional collaboration of researchers led by John Carlstrom, the S. Chandrasekhar Distinguished Service Professor in Astronomy & Astrophysics at the University of Chicago, made the discovery. They announced their findings in a paper published Sept. 30, 2013, in the journal Physical Review Letters—using the first data from SPTpol, a polarization-sensitive camera installed on the telescope in January 2012.
"The detection of B-mode polarization by South Pole Telescope is a major milestone, a technical achievement that indicates exciting physics to come," Carlstrom said.
The cosmic microwave background is a sea of photons (light particles) left over from the big bang that pervades all of space, at a temperature of minus 270 degrees Celsius—a mere 3 degrees above absolute zero. Measurements of this ancient light have already given physicists a wealth of knowledge about the properties of the universe. Tiny variations in temperature of the light have been painstakingly mapped across the sky by multiple experiments, and scientists are gleaning even more information from polarized light.
Light is polarized when its electromagnetic waves are preferentially oriented in a particular direction. Light from the cosmic microwave background is polarized mainly due to the scattering of photons off of electrons in the early universe, through the same process by which light is polarized as it reflects off the surface of a lake or the hood of a car. The polarization patterns that result are of a swirl-free type, known as "E modes," which have proven easier to detect than the fainter B modes, and were first measured a decade ago, by a collaboration of researchers using the Degree Angular Scale Interferometer, another UChicago-led experiment.
B modes can't be generated by simple scattering, instead pointing to a more complex process—hence scientists' interest in measuring them. Gravitational lensing, it has long been predicted, can twist E modes into B modes as photons pass by galaxies and other massive objects on their way toward earth. This expectation has now been confirmed.
To tease out the B modes in their data, the scientists used a previously measured map of the distribution of mass in the universe to determine where the gravitational lensing should occur. They combined their measurement of E modes with the mass distribution to provide a template of the expected twisting into B modes. The scientists are currently working with another year of data to further refine their measurement of B modes.
The careful study of such B modes will help physicists better understand the universe. The patterns can be used to map out the distribution of mass, thereby more accurately defining cosmologically important properties like the masses of neutrinos, tiny elementary particles prevalent throughout the cosmos.
Similar, more elusive B modes would provide dramatic evidence of inflation, the theorized turbulent period in the moments after the big bang when the universe expanded extremely rapidly. Inflation is a well-regarded theory among cosmologists because its predictions agree with observations, but thus far there is not a definitive confirmation of the theory. Measuring B modes generated by inflation is a possible way to alleviate lingering doubt.
"The detection of a primordial B-mode polarization signal in the microwave background would amount to finding the first tremors of the Big Bang," said the study's lead author, Duncan Hanson, a postdoctoral scientist at McGill University in Canada.
B modes from inflation are caused by gravitational waves. These ripples in space-time are generated by intense gravitational turmoil, conditions that would have existed during inflation. These waves, stretching and squeezing the fabric of the universe, would give rise to the telltale twisted polarization patterns of B modes. Measuring the resulting polarization would not only confirm the theory of inflation—a huge scientific achievement in itself—but would also give scientists information about physics at very high energies—much higher than can be achieved with particle accelerators.
The measurement of B modes from gravitational lensing is an important first step in the quest to measure inflationary B modes. In inflationary B mode searches, lensing B modes show up as noise. "The new result shows that this noise can be accounted for and subtracted off so that scientists can search for and hopefully measure the inflationary B modes underneath," Hanson said. "The lensing signal itself can also be used by itself to learn about the distribution of mass in the universe."
INFORMATION:
Citation: "Detection of B-mode polarization in the Cosmic Microwave Background with Data from the South Pole Telescope," by Duncan Hanson and the South Pole Telescope Collaboration. Physical Review Letters, Vol. 111, Issue 14, 2013.
Funding: The South Pole Telescope is supported by grants from the National Science Foundation. Support at Argonne National Laboratory for the development of SPTpol and data analysis is supported by the U.S. Department of Energy's Office of Science. Further support of the development and construction of the SPTpol receiver were provided by the Kavli Foundation, the Gordon and Betty Moore Foundation and the National Science Foundation.
Swirls in remnants of big bang may hold clues to universe's infancy
2013-12-14
ELSE PRESS RELEASES FROM THIS DATE:
UI researcher studies evolution on the molecular level
2013-12-14
UI researcher studies evolution on the molecular level
Findings may be useful in design of future drugs and catalysts
The theory of evolution suggests that present-day organisms evolved from earlier life forms.
At the molecular level, evolution reshaped some of ...
Scientists improve human self-control through electrical brain stimulation
2013-12-13
Scientists improve human self-control through electrical brain stimulation
If you have ever said or done the wrong thing at the wrong time, you should read this. Neuroscientists at The University of Texas Health Science Center ...
UCLA stem cell scientists first to track joint cartilage development in humans
2013-12-13
UCLA stem cell scientists first to track joint cartilage development in humans
Stem cell researchers from UCLA have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what ...
Researchers hope newly discovered gene interaction could lead to novel cancer therapies
2013-12-13
Researchers hope newly discovered gene interaction could lead to novel cancer therapies
Scientists from Virginia Commonwealth University Massey Cancer Center have revealed how two genes interact to kill a wide range of cancer cells. Originally discovered ...
Changing chemo not beneficial for metastatic B.C. patients with elevated circulating tumor cells
2013-12-13
Changing chemo not beneficial for metastatic B.C. patients with elevated circulating tumor cells
SAN ANTONIO — For women with metastatic breast cancer who had elevated amounts of circulating tumor cells (CTCs) in their blood after a first line ...
New presurgery combination therapy may improve outcomes for women with triple-negative breast cancer
2013-12-13
New presurgery combination therapy may improve outcomes for women with triple-negative breast cancer
SAN ANTONIO — The I-SPY 2 trial, an innovative, multidrug, phase II breast cancer trial, has yielded positive results with the first drug to complete ...
New combination therapy fails to delay progression of advanced breast cancer
2013-12-13
New combination therapy fails to delay progression of advanced breast cancer
SAN ANTONIO — Adding the antibody therapy ramucirumab to the chemotherapy drug docetaxel did not delay disease progression for patients with HER2-negative, advanced ...
Bisphosphonate treatment fails to improve outcomes for women with chemoresistant breast cancer
2013-12-13
Bisphosphonate treatment fails to improve outcomes for women with chemoresistant breast cancer
SAN ANTONIO — Treatment with the bisphosphonate zoledronate did not improve outcomes for women with chemoresistant breast cancer, according to initial ...
New presurgery treatment combination more effective for women with triple-negative breast cancer
2013-12-13
New presurgery treatment combination more effective for women with triple-negative breast cancer
SAN ANTONIO — Adding the chemotherapy drug carboplatin and/or the antibody therapy bevacizumab to standard presurgery chemotherapy increased the ...
Additional drug shows promise for women with triple-negative breast cancer
2013-12-13
Additional drug shows promise for women with triple-negative breast cancer
SAN ANTONIO— In a nationwide study of women with "triple-negative" breast cancer, adding the chemotherapy drug carboplatin or the angiogenesis inhibitor Avastin to standard chemotherapy ...