(Press-News.org) Contact information: David Cameron
david_cameron@hms.harvard.edu
617-432-0441
Harvard Medical School
A new -- and reversible -- cause of aging
A naturally produced compound rewinds aspects of age-related demise in mice
Researchers have discovered a cause of aging in mammals that may be reversible.
The essence of this finding is a series of molecular events that enable communication inside cells between the nucleus and mitochondria. As communication breaks down, aging accelerates. By administering a molecule naturally produced by the human body, scientists restored the communication network in older mice. Subsequent tissue samples showed key biological hallmarks that were comparable to those of much younger animals.
"The aging process we discovered is like a married couple—when they are young, they communicate well, but over time, living in close quarters for many years, communication breaks down," said Harvard Medical School Professor of Genetics David Sinclair, senior author on the study. "And just like with a couple, restoring communication solved the problem."
This study was a joint project between Harvard Medical School, the National Institute on Aging, and the University of New South Wales, Sydney, Australia, where Sinclair also holds a position.
The findings are published Dec. 19 in Cell.
Communication breakdown
Mitochondria are often referred to as the cell's "powerhouse," generating chemical energy to carry out essential biological functions. These self-contained organelles, which live inside our cells and house their own small genomes, have long been identified as key biological players in aging. As they become increasingly dysfunctional over time, many age-related conditions such as Alzheimer's disease and diabetes gradually set in.
Researchers have generally been skeptical of the idea that aging can be reversed, due mainly to the prevailing theory that age-related ills are the result of mutations in mitochondrial DNA—and mutations cannot be reversed.
Sinclair and his group have been studying the fundamental science of aging—which is broadly defined as the gradual decline in function with time—for many years, primarily focusing on a group of genes called sirtuins. Previous studies from his lab showed that one of these genes, SIRT1, was activated by the compound resveratrol, which is found in grapes, red wine and certain nuts.
Ana Gomes, a postdoctoral scientist in the Sinclair lab, had been studying mice in which this SIRT1 gene had been removed. While they accurately predicted that these mice would show signs of aging, including mitochondrial dysfunction, the researchers were surprised to find that most mitochondrial proteins coming from the cell's nucleus were at normal levels; only those encoded by the mitochondrial genome were reduced.
"This was at odds with what the literature suggested," said Gomes.
As Gomes and her colleagues investigated potential causes for this, they discovered an intricate cascade of events that begins with a chemical called NAD and concludes with a key molecule that shuttles information and coordinates activities between the cell's nuclear genome and the mitochondrial genome. Cells stay healthy as long as coordination between the genomes remains fluid. SIRT1's role is intermediary, akin to a security guard; it assures that a meddlesome molecule called HIF-1 does not interfere with communication.
For reasons still unclear, as we age, levels of the initial chemical NAD decline. Without sufficient NAD, SIRT1 loses its ability to keep tabs on HIF-1. Levels of HIF-1 escalate and begin wreaking havoc on the otherwise smooth cross-genome communication. Over time, the research team found, this loss of communication reduces the cell's ability to make energy, and signs of aging and disease become apparent.
"This particular component of the aging process had never before been described," said Gomes.
While the breakdown of this process causes a rapid decline in mitochondrial function, other signs of aging take longer to occur. Gomes found that by administering an endogenous compound that cells transform into NAD, she could repair the broken network and rapidly restore communication and mitochondrial function. If the compound was given early enough—prior to excessive mutation accumulation—within days, some aspects of the aging process could be reversed.
Cancer connection
Examining muscle from two-year-old mice that had been given the NAD-producing compound for just one week, the researchers looked for indicators of insulin resistance, inflammation and muscle wasting. In all three instances, tissue from the mice resembled that of six-month-old mice. In human years, this would be like a 60-year-old converting to a 20-year-old in these specific areas.
One particularly important aspect of this finding involves HIF-1. More than just an intrusive molecule that foils communication, HIF-1 normally switches on when the body is deprived of oxygen. Otherwise, it remains silent. Cancer, however, is known to activate and hijack HIF-1. Researchers have been investigating the precise role HIF-1 plays in cancer growth.
"It's certainly significant to find that a molecule that switches on in many cancers also switches on during aging," said Gomes. "We're starting to see now that the physiology of cancer is in certain ways similar to the physiology of aging. Perhaps this can explain why the greatest risk of cancer is age. "
"There's clearly much more work to be done here, but if these results stand, then many aspects of aging may be reversible if caught early," said Sinclair.
The researchers are now looking at the longer-term outcomes of the NAD-producing compound in mice and how it affects the mouse as a whole. They are also exploring whether the compound can be used to safely treat rare mitochondrial diseases or more common diseases such as Type 1 and Type 2 diabetes. Longer term, Sinclair plans to test if the compound will give mice a healthier, longer life.
###
The Sinclair lab is funded by the National Institute on Aging (NIA/NIH), the Glenn Foundation for Medical Research, the Juvenile Diabetes Research Foundation, the United Mitochondrial Disease Foundation and a gift from the Schulak family.
Written by David Cameron
Harvard Medical School (hms.harvard.edu) has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 16 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Hebrew Senior Life, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital and VA Boston Healthcare System.
A new -- and reversible -- cause of aging
A naturally produced compound rewinds aspects of age-related demise in mice
2013-12-19
ELSE PRESS RELEASES FROM THIS DATE:
Scientific data lost at alarming rate
2013-12-19
Scientific data lost at alarming rate
Eighty per cent of scientific data are lost within two decades, according to a new study that tracks the accessibility of data over time.
The culprits? Old e-mail addresses and obsolete storage devices.
"Publicly funded ...
Big data project reveals where carbon-stocking projects in Africa provide the greatest benefits
2013-12-19
Big data project reveals where carbon-stocking projects in Africa provide the greatest benefits
It is increasingly recognized that climate change has the potential to threaten people and nature, and that it is imperative to tackle the drivers of climate change, ...
Texting may be good for your health
2013-12-19
Texting may be good for your health
Txt4health program piloted in Detroit and Cincinnati motivated people to change behavior to reduce diabetes risk but less than half of enrollees stuck with service
ANN ARBOR, Mich. — New University of Michigan ...
Brain repair after injury and Alzheimer's disease
2013-12-19
Brain repair after injury and Alzheimer's disease
Technology developed to regenerate functional neurons (In vivo reprogramming of reactive glial cells into functional neurons)
Researchers at Penn State University have developed an innovative technology to regenerate functional ...
Research linking autism symptoms to gut microbes called 'groundbreaking'
2013-12-19
Research linking autism symptoms to gut microbes called 'groundbreaking'
A new study showing that feeding mice a beneficial type of bacteria can ameliorate autism-like symptoms is "groundbreaking," according to University of Colorado Boulder Professor ...
Modern caterpillars feed at higher temperatures in response to climate change
2013-12-19
Modern caterpillars feed at higher temperatures in response to climate change
Caterpillars of two species of butterflies in Colorado and California have evolved to feed rapidly at higher and at a broader range of temperatures in the past 40 ...
Healthier Happy Meals
2013-12-19
Healthier Happy Meals
Small changes to familiar combo meals can help cut calorie consumption
What would happen if a fast-food restaurant reduces the calories in a children's meal by 104 calories, mainly by decreasing the portion size of French fries? Would children ...
Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer
2013-12-19
Renegades of cell biology: Why K-Ras gene mutations prove so deadly in cancer
SALT LAKE CITY—Cells with a mutation in the gene called K-Ras—found in close to 30 percent of all cancers, but mostly those with worst prognosis, such as pancreatic cancer, colon cancer, and lung ...
Researchers find a cause of aging that can be reversed
2013-12-19
Researchers find a cause of aging that can be reversed
Medical researchers have found a cause of ageing in animals that can be reversed, possibly paving the way for new treatments for age-related diseases including cancer, type 2 diabetes, muscle ...
Anti-epilepsy drugs can cause inflammations
2013-12-19
Anti-epilepsy drugs can cause inflammations
RUB physicians investigate how various substances affect glial cells
Physicians at the Ruhr-Universität Bochum (RUB) have been investigating if established anti-epilepsy drugs have anti-inflammatory or pro-inflammatory ...
LAST 30 PRESS RELEASES:
Less intensive works best for agricultural soil
Arctic rivers project receives “national champion” designation from frontiers foundation
Computational biology paves the way for new ALS tests
Study offers new hope for babies born with opioid withdrawal syndrome
UT, Volkswagen Group of America celebrate research partnership
New Medicare program could dramatically improve affordability for cancer drugs – if patients enroll
Are ‘zombie’ skin cells harmful or helpful? The answer may be in their shapes
University of Cincinnati Cancer Center presents research at AACR 2025
Head and neck, breast, lung and survivorship studies headline Dana-Farber research at AACR Annual Meeting 2025
AACR: Researchers share promising results from MD Anderson clinical trials
New research explains why our waistlines expand in middle age
Advancements in muon detection: Taishan Antineutrino Observatory's innovative top veto tracker
Chips off the old block
Microvascular decompression combined with nerve combing for atypical trigeminal neuralgia
Cutting the complexity from digital carpentry
Lung immune cell type “quietly” controls inflammation in COVID-19
Fiscal impact of expanded Medicare coverage for GLP-1 receptor agonists to treat obesity
State and sociodemographic trends in US cigarette smoking with future projections
Young adults drive historic decline in smoking
NFCR congratulates Dr. Robert C. Bast, Jr. on receiving the AACR-Daniel D. Von Hoff Award for Outstanding Contributions to Education and Training in Cancer Research
Chimpanzee stem cells offer new insights into early embryonic development
This injected protein-like polymer helps tissues heal after a heart attack
FlexTech inaugural issue launches, pioneering interdisciplinary innovation in flexible technology
In Down syndrome mice, 40Hz light and sound improve cognition, neurogenesis, connectivity
Methyl eugenol: potential to inhibit oxidative stress, address related diseases, and its toxicological effects
A vascularized multilayer chip reveals shear stress-induced angiogenesis in diverse fluid conditions
AI helps unravel a cause of Alzheimer's disease and identify a therapeutic candidate
Coalition of Autism Scientists critiques US Department of Health and Human Services Autism Research Initiative
Structure dictates effectiveness, safety in nanomedicine
Mission accomplished for the “T2T” Hong Kong Bauhinia Genome Project
[Press-News.org] A new -- and reversible -- cause of agingA naturally produced compound rewinds aspects of age-related demise in mice