PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Gladstone scientists discover how immune cells die during HIV infection; identify potential drug to block AIDS

Gladstone plans to launch Phase 2 trial with existing anti-inflammatory

2013-12-20
(Press-News.org) Contact information: Anne Holden
anne.holden@gladstone.ucsf.edu
415-734-2534
Gladstone Institutes
Gladstone scientists discover how immune cells die during HIV infection; identify potential drug to block AIDS Gladstone plans to launch Phase 2 trial with existing anti-inflammatory

SAN FRANCISCO, CA—December 19, 2013—Research led by scientists at the Gladstone Institutes has identified the precise chain of molecular events in the human body that drives the death of most of the immune system's CD4 T cells as an HIV infection leads to AIDS. Further, they have identified an existing anti-inflammatory drug that in laboratory tests blocks the death of these cells—and now are planning a Phase 2 clinical trial to determine if this drug or a similar drug can prevent HIV-infected people from developing AIDS and related conditions.

Two separate journal articles, published simultaneously today in Nature and Science, detail the research from the laboratory of Warner C. Greene, MD, PhD, who directs virology and immunology research at Gladstone, an independent biomedical-research nonprofit. His lab's Science paper reveals how, during an HIV infection, a protein known as IFI16 senses fragments of HIV DNA in abortively infected immune cells. This triggers the activation of the human enzyme caspase-1 and leads to pyroptosis, a fiery and highly inflammatory form of cell death. As revealed in the Nature paper, this repetitive cycle of abortive infection, cell death, inflammation and recruitment of additional CD4 T cells to the infection "hot zone" ultimately destroys the immune system and causes AIDS. The Nature paper further describes laboratory tests in which an existing anti-inflammatory inhibits caspase-1, thereby preventing pyroptosis and breaking the cycle of cell death and inflammation.

"Gladstone has made two important discoveries, first by showing how the body's own immune response to HIV causes CD4 T cell death via a pathway triggering inflammation, and secondly by identifying the host DNA sensor that detects the viral DNA and triggers this death response," said Robert F. Siliciano, MD, PhD, a professor of medicine at Johns Hopkins University, and a Howard Hughes Medical Institute investigator. "This one-two punch of discoveries underscores the critical value of basic science—by uncovering the major cause of CD4 T cell depletion in AIDS, Dr. Greene's lab has been able to identify a potential new therapy for blocking the disease's progression and improving on current antiretroviral medications."

The research comes at a critical time, as so-called AIDS fatigue leads many to think that HIV/AIDS is solved. In fact, HIV infected an additional 2.3 million people last year, according to UNAIDS estimates, bringing the global total of HIV-positive people to 35.3 million. Antiretroviral medications (ARVs) can prevent HIV infections from causing AIDS, but they do not cure AIDS. Further, those taking ARVs risk both a latent version of the virus, which can rebound if ARVs are discontinued, and the premature onset of diseases that normally occur in aging populations. Plus, some 16 million people who carry the virus do not have access to ARVs, according to World Health Organization estimates.

Seeking solutions for all these challenges, the new Gladstone discovery builds on earlier research from Dr. Greene's lab, published in Cell in 2010. This study showed how HIV attempts, but fails, to productively infect most of the immune system's CD4 T cells. In an attempt to protect the body from the spreading virus, these immune cells then commit "cellular suicide," leading to the collapse of the immune system—and AIDS.

After that research, the Gladstone scientists began to look for ways to prevent this process by studying exactly how the suicidal response is initiated. Working in the laboratory with human spleen and tonsil tissue, as well as lymph-node tissue from HIV-infected patients, the researchers found that these so-called abortive infections leave fragments of HIV's DNA in the immune cells. As described in Nature, pyroptosis ensues as immune cells rupture and release inflammatory signals that attract still more cells to repeat the death cycle.

"Our studies have investigated and identified the root cause of AIDS—how CD4 T cells die," said Gladstone Staff Research Investigator Gilad Doitsh, PhD, who is the Nature paper's lead author, along with Nicole Galloway and Xin Geng, PhD. "Despite some 30 years of HIV research, this key HIV/AIDS process has remained pretty much a black box."

Once the scientists discovered this key process, as described in Nature, they began to investigate how the body senses the fragments of HIV's DNA in the first place, before alerting the enzyme caspase-1 to launch an immune response in the CD4 T cells. To identify the so-called DNA sensor, the scientists found a way to genetically manipulate CD4 T cells in spleen and tonsil tissue. In doing so, they discovered that reducing the activity of a protein known as IFI16 inhibited pyroptosis, explained Zhiyuan Yang, PhD, a Gladstone postdoctoral fellow who is one of the paper's two lead authors.

"This identified IFI16 as the DNA sensor, which then sends signals to caspase-1 and triggers pyroptosis," says Kathryn M. Monroe, PhD, the Science paper's other lead author, who completed the research while a postdoctoral fellow at Gladstone. "We can't block a process until we understand all of its steps—so this discovery is critical to devising ways to inhibit the body's own destructive response to HIV. We have high hopes for the upcoming clinical trial."

The Phase 2 trial—which will test an existing anti-inflammatory's ability to block inflammation and pyroptosis in HIV-infected people—promises to validate a variety of expected advantages to this therapy. For example, by targeting the human body, or host, instead of the virus, the drug is likely to avoid the rapid emergence of drug resistance that often plagues the use of ARVs. The anti-inflammatory may also provide a bridge therapy for the millions without access to ARVs, while also reducing persistent inflammation in HIV-infected people already on ARVs. Many suspect this inflammation drives the early onset of aging-related conditions such as dementia and cardiovascular disease. By reducing inflammation, the drug might also prevent expansion of a reservoir of latent virus that hides in the body where it thwarts a cure for HIV/AIDS.

"This has been an absolutely fascinating voyage of discovery," said Dr. Greene, who is also a professor of medicine, microbiology and immunology at the University of California, San Francisco, with which Gladstone is affiliated. "Every time we turned over an 'experimental rock' in the studies, a new surprise jumped out."



INFORMATION:

Nature article coauthors Zhiyuan Yang, PhD, Kathryn M. Monroe, PhD, Orlando Zepeda, Stefanie Sowinski, PhD, and Isa Muños Arias also participated in this research at Gladstone. The research was supported by the National Institutes of Health grants R21 AI102782, P30 AI027763 (UCSF-Gladstone Center for AIDS Research), 1DP1036502 (Avant-Garde Award for HIV/AIDS Research), U19 AI0961133 (Martin Delaney CARE Collaboratory), the A.P. Giannini Postdoctoral Research Fellowship and the UCSF/Robert John Sabo Trust Award.

Science article coauthors Jeffrey R. Johnson, PhD, Xin Geng, PhD, Gilad Doitsh, PhD, and Nevan J. Krogan, PhD, also participated in this research at Gladstone. The research was supported by the National Institutes of Health grants R21 AI102782, P50 GM082250, P01 AI090935, P50 GM081879, P30 AI027763 (UCSF-Gladstone Center for AIDS Research), 1DP1036502 (Avant-Garde Award for HIV/AIDS Research), U19 AI0961133 (Martin Delaney CARE Collaboratory); and the A.P. Giannini Postdoctoral Research Fellowship.

About the Gladstone Institutes

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral, immune and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.



ELSE PRESS RELEASES FROM THIS DATE:

Greater dietary fiber intake associated with lower risk of heart disease

2013-12-20
Greater dietary fiber intake associated with lower risk of heart disease As little as 1 extra portion of wholegrains plus more fruit and vegetables can decrease risk In recent years, a decline in both cardiovascular disease (CVD) and coronary heart disease ...

Nearly 8 percent of hip implants not backed by safety evidence

2013-12-20
Nearly 8 percent of hip implants not backed by safety evidence Current device regulation process 'seems to be entirely inadequate,' warn researchers The researchers say the current regulation process "seems to be entirely inadequate" and they call for a ...

Government's voluntary approach to improving hospital food is not working, argues expert

2013-12-20
Government's voluntary approach to improving hospital food is not working, argues expert 3 out of 5 hospital meals found to contain more salt than a Big Mac In an article published on bmj.com today, she says the government has wasted more than £54 million ...

Many people with diabetes still lose vision, despite availability of vision-sparing treatment

2013-12-20
Many people with diabetes still lose vision, despite availability of vision-sparing treatment Researchers blame lack of education about advances in preventive care Despite recent advances in prevention and treatment of most vision loss attributed to diabetes, ...

Salty surprise -- ordinary table salt turns into 'forbidden' forms

2013-12-20
Salty surprise -- ordinary table salt turns into 'forbidden' forms High-pressure X-ray experiments violate textbook rules of chemistry This news release is available in German. High-pressure experiments with ordinary table salt have produced ...

The black-white infant mortality gap: Large, persistent and unpredictable

2013-12-20
The black-white infant mortality gap: Large, persistent and unpredictable EAST LANSING, Mich. — The unobservable factors that underpin the infant mortality gap between blacks and whites have persisted for more than 20 years and now appear to play a larger role than ...

Biologists find clues to a parasite's inconsistency

2013-12-20
Biologists find clues to a parasite's inconsistency CAMBRIDGE, MA -- Toxoplasma gondii, a parasite related to the one that causes malaria, infects about 30 percent of the world's population. Most of those people don't even know they are infected, but ...

Electron 'antenna' tunes in to physics beyond Higgs

2013-12-20
Electron 'antenna' tunes in to physics beyond Higgs Though it was hailed as a triumph for the "Standard Model" of physics – the reigning model of fundamental forces and particles – physicists were quick to emphasize that last year's discovery of the Higgs boson still ...

Opposing phenomena possible key to high-efficiency electricity delivery

2013-12-20
Opposing phenomena possible key to high-efficiency electricity delivery The coexistence of two opposing phenomena might be the secret to understanding the enduring mystery in physics of how materials heralded as the future of powering our homes and communities ...

Electron's shapeliness throws a curve at supersymmetry

2013-12-20
Electron's shapeliness throws a curve at supersymmetry A small band of particle-seeking scientists at Yale and Harvard has established a new benchmark for the electron's almost perfect roundness, raising doubts about certain theories that predict what lies beyond physics' ...

LAST 30 PRESS RELEASES:

HKU ecologists uncover significant ecological impact of hybrid grouper release through religious practices

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

[Press-News.org] Gladstone scientists discover how immune cells die during HIV infection; identify potential drug to block AIDS
Gladstone plans to launch Phase 2 trial with existing anti-inflammatory