(Press-News.org) Contact information: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Team finds new way to map important drug targets
Innovative techniques and new X-ray technology enable faster, more accurate imaging of hard-to-study membrane proteins
LA JOLLA, CA — December 19, 2013 — Researchers have used new techniques and one of the brightest X-ray sources on the planet to map the 3-D structure of an important cellular gatekeeper in a more natural state than possible before.
The new approach, published December 20, 2013, in the journal Science, is a major advance in exploring G protein-coupled receptors (GPCRs)—a vast, hard-to-study family of proteins that play a key role in human health. GPCRs are targeted by an estimated 40 percent of modern medicines.
"For the first time we have a room-temperature, high-resolution structure of one of the most difficult-to-study but medically important families of membrane proteins," said Vadim Cherezov, a structural biologist at The Scripps Research Institute (TSRI) who led the research. "And we have validated this new method so that it can be confidently used for solving new structures."
Significant Advantages
In the study, the scientists examined the human serotonin receptor, which plays a role in learning, mood and sleep and is the target of drugs that combat obesity, depression and migraines. The scientists prepared crystallized samples of the receptor in a fatty gel that mimics its environment in the cell.
Working at the Linac Coherent Light Source (LCLS) X-ray laser at the Department of Energy's (DOE's) SLAC National Accelerator Laboratory, the scientists then used a newly designed injection system, engineered by a team from Arizona State University, to stream the gel into the path of the X-ray pulses, which hit the crystals and produced patterns used to reconstruct a high-resolution, 3-D model of the receptor.
The method eliminates one of the biggest hurdles in the study of GPCRs. It is notoriously difficult to grow sufficiently large crystals of these proteins needed for conventional X-ray studies at synchrotrons. Because LCLS is a billion times brighter than synchrotrons and produces ultrafast snapshots, it enables researchers to use tiny crystals and collect data in the instant before any damage sets in.
"This is one of the niches that LCLS is perfect for," said SLAC Staff Scientist Sébastien Boutet, a co-author of the report. "With really challenging proteins like this you often need years to develop crystals that are large enough to study at synchrotron X-ray facilities."
Wei Liu, a TSRI staff scientist who was first author of the study, said, "It's a big advantage that you don't have to harvest individual crystals—you can just load the whole gel-like sample with embedded microcrystals in the injector and start collecting data. It's also significant that the crystals don't have to be cryo-cooled in liquid nitrogen to protect them from radiation damage. Instead of looking at the samples at minus 173 degrees Celsius, we can look at them at room temperature—much closer to the temperature of their natural environment, which is body temperature."
While a team led by Scripps Research Institute scientists had previously determined the human serotonin structure with conventional methods, that effort required the receptor to be frozen. It also took much longer.
Even after samples of a GPCR are crystallized and imaged, with conventional methods it can take several months to optimize the crystal size and collect enough synchrotron X-ray data to produce structural information, Cherezov noted. This new method can potentially condense that timeline to a matter of days.
'Just the Beginning'
Disorders linked to GPCRs include hypertension, asthma, schizophrenia and Parkinson's disease. Because of their vital role in regulating cells' signaling and response mechanisms and their importance to human health, advances in receptor-related research garnered the 2012 Nobel Prize in Chemistry.
So far, scientists have been able to map the structures of fewer than two dozen of the estimated 800 GPCRs in humans. The more accurate the structure, the better scientists can use it to create effective drug treatments without side effects.
"I view these recent experiments as just the beginning," Cherezov said. "Now it is time to start making a serious impact on the field of structural biology of G protein-coupled receptors and other challenging membrane proteins and complexes. The pace of structural studies in this field is breathtaking, and there is still a lot unknown."
INFORMATION:
In addition to Cherezov, Liu and Boutet, the study, "Serial Femtosecond Crystallography of G Protein–Coupled Receptors," was authored by Daniel Wacker, Gye Won Han, Vsevolod Katritch, Chong Wang and Raymond C. Stevens of TSRI; Cornelius Gati, Anton Barty, Kenneth R. Beyerlein and Thomas A. White of Deutsches Elektronen-Synchrotron; Daniel James, Dingjie Wang, Garrett Nelson, Uwe Weierstall, Nadia A. Zatsepin, Shibom Basu, Raimund Fromme, Christopher Kupitz, Kimberley N. Rendek, Ingo Grotjohann, Petra Fromme and John C. H. Spence of Arizona State University; Dianfan Li, Syed T. A. Shah and Martin Caffrey of Trinity College, Dublin; Marc Messerschmidt, Garth J. Williams and Jason E. Koglin of SLAC; M. Marvin Seibert of SLAC and Uppsala University; Richard A. Kirian of Deutsches Elektronen-Synchrotron and Arizona State University; and Henry N. Chapman of Deutsches Elektronen-Synchrotron, University of Hamburg and Center for Ultrafast Imaging.
The research was supported by the National Institutes of Health Common Fund in Structural Biology (grants P50 GM073197, P50 GM073210, R01 GM095583), the National Institute of General Medical Sciences (PSI:Biology grants U54 GM094618, U54 GM094599) and the National Science Foundation (award 1231306), with additional support from the Helmholz Association, the German Federal Ministry of Education and Research, and Science Foundation Ireland (07/IN.1/B1836, 12/IA/1255).
Team finds new way to map important drug targets
Innovative techniques and new X-ray technology enable faster, more accurate imaging of hard-to-study membrane proteins
2013-12-20
ELSE PRESS RELEASES FROM THIS DATE:
Saving dollars while helping babies
2013-12-20
Saving dollars while helping babies
Nurse home visits for infants save $3 for every $1 spent
DURHAM, N.C. – As healthcare costs continue to balloon, a new Duke study points to a surprising avenue for potential savings: nurse home visits. For every $1 spent on nurse home ...
Throwing out the textbook: Salt surprises chemists
2013-12-20
Throwing out the textbook: Salt surprises chemists
Washington, D.C.—Table salt, sodium chloride, is one of the first chemical compounds that schoolchildren learn. New research from a team including Carnegie's Alexander Goncharov shows that under ...
X-ray laser maps important drug target
2013-12-20
X-ray laser maps important drug target
New technology allows faster, more accurate imaging of hard-to-study membrane proteins
Menlo Park, Calif. — Researchers have used one of the brightest X-ray sources on the planet to map the 3-D structure ...
Anxiety linked to higher long-term risk of stroke
2013-12-20
Anxiety linked to higher long-term risk of stroke
American Heart Association Rapid Access Journal Report
The greater your anxiety level, the higher your risk of having a stroke, according to new research published in the American Heart Association journal Stroke.
The ...
Natural gas saves water, even when factoring in water lost to hydraulic fracturing
2013-12-20
Natural gas saves water, even when factoring in water lost to hydraulic fracturing
A new study finds that in Texas, the U.S. state that annually generates the most electricity, the transition from coal to natural gas for electricity generation is saving ...
Scientists decode serotonin receptor at room temperature
2013-12-20
Scientists decode serotonin receptor at room temperature
X-ray laser opens up new paths for investigating biomolecules
This news release is available in German. An international research team has decoded the molecular structure of the medically ...
Gladstone scientists discover how immune cells die during HIV infection; identify potential drug to block AIDS
2013-12-20
Gladstone scientists discover how immune cells die during HIV infection; identify potential drug to block AIDS
Gladstone plans to launch Phase 2 trial with existing anti-inflammatory
SAN FRANCISCO, CA—December 19, 2013—Research led by scientists at the Gladstone ...
Greater dietary fiber intake associated with lower risk of heart disease
2013-12-20
Greater dietary fiber intake associated with lower risk of heart disease
As little as 1 extra portion of wholegrains plus more fruit and vegetables can decrease risk
In recent years, a decline in both cardiovascular disease (CVD) and coronary heart disease ...
Nearly 8 percent of hip implants not backed by safety evidence
2013-12-20
Nearly 8 percent of hip implants not backed by safety evidence
Current device regulation process 'seems to be entirely inadequate,' warn researchers
The researchers say the current regulation process "seems to be entirely inadequate" and they call for a ...
Government's voluntary approach to improving hospital food is not working, argues expert
2013-12-20
Government's voluntary approach to improving hospital food is not working, argues expert
3 out of 5 hospital meals found to contain more salt than a Big Mac
In an article published on bmj.com today, she says the government has wasted more than £54 million ...
LAST 30 PRESS RELEASES:
HKU ecologists uncover significant ecological impact of hybrid grouper release through religious practices
New register opens to crown Champion Trees across the U.S.
A unified approach to health data exchange
New superconductor with hallmark of unconventional superconductivity discovered
Global HIV study finds that cardiovascular risk models underestimate for key populations
New study offers insights into how populations conform or go against the crowd
Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials
WashU researchers map individual brain dynamics
Technology for oxidizing atmospheric methane won’t help the climate
US Department of Energy announces Early Career Research Program for FY 2025
PECASE winners: 3 UVA engineering professors receive presidential early career awards
‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions
MSU researcher’s breakthrough model sheds light on solar storms and space weather
Nebraska psychology professor recognized with Presidential Early Career Award
New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration
Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins
From lab to field: CABBI pipeline delivers oil-rich sorghum
Stem cell therapy jumpstarts brain recovery after stroke
Polymer editing can upcycle waste into higher-performance plastics
Research on past hurricanes aims to reduce future risk
UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology
Panorama of our nearest galactic neighbor unveils hundreds of millions of stars
A chain reaction: HIV vaccines can lead to antibodies against antibodies
Bacteria in polymers form cables that grow into living gels
Rotavirus protein NSP4 manipulates gastrointestinal disease severity
‘Ding-dong:’ A study finds specific neurons with an immune doorbell
A major advance in biology combines DNA and RNA and could revolutionize cancer treatments
Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor
NIH to lead implementation of National Plan to End Parkinson’s Act
Growth of private equity and hospital consolidation in primary care and price implications
[Press-News.org] Team finds new way to map important drug targetsInnovative techniques and new X-ray technology enable faster, more accurate imaging of hard-to-study membrane proteins