PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A wrong molecular turn leads down the path to Type 2 diabetes

2013-12-21
(Press-News.org) Contact information: Brian Grabowski
bgrabowski@anl.gov
630-252-1232
DOE/Argonne National Laboratory
A wrong molecular turn leads down the path to Type 2 diabetes Computing resources at the U.S. Department of Energy's (DOE) Argonne National Laboratory have helped researchers better grasp how proteins misfold to create the tissue-damaging structures that lead to type 2 diabetes. The structures, called amyloid fibrils, are also implicated in neurodegenerative conditions such as Alzheimer's and Parkinson's, and in prion diseases like Creutzfeldt-Jacob and mad cow disease. The results pinpoint a critical intermediate step in the chemical pathway that leads to amyloid fibril formation. With the new culprit in view, future work could target a possible treatment, such as designing an inhibitor to interfere with the harmful pathway. The results also helped reconcile earlier data from other labs that until now appeared contradictory. An amyloid fibril is a large structure consisting of misfolded proteins. Such fibrils form plaques, or areas of tissue damage, that researchers can observe with microscopes. Fibrils are believed to arise when proteins deviate from their normal 3D structures and instead adopt misfolded states that tend to clump together. Like puzzle pieces, proteins are only useful when they have the correct shape. And since the fibrils they form when misfolded are strong, scientists believe that hope primarily lies not in dismantling them, but in heading off the folding errors. The researchers used two main approaches to identify the intermediate step and understand the pathway. University of Wisconsin-Madison professor Martin Zanni used a sophisticated technique that relies on 2-D infrared spectroscopy to follow the sequence of events in the chemical reactions leading to fibril formation. His technique can measure extremely fast processes using very small samples. Then Juan de Pablo and Chi-Cheng Chiu from the University of Chicago's Institute for Molecular Engineering interpreted Zanni's measurements with data from molecular simulations to arrive at a complete picture of the early events leading to amyloid formation. De Pablo and Chiu used Intrepid, an IBM Blue Gene/P computer system at the Argonne Leadership Computing Facility (ALCF), and resources at the University of Chicago Research Computing Center. De Pablo and Chiu composed, ran and interpreted large-scale computer simulations of the pathway in action, and the results supplied an essential model of the molecular steps involved in the reaction. "Using only one of the two methods would have been like running a race with only one leg," de Pablo said. "By combining both, computation and experiment, we can get to our answers faster and more dependably." Together, researchers located an entire step that had been missing, and whose absence had been fueling confusion. An earlier study indicated that the intermediate step was likely a floppy loop area formed by proteins, which didn't seem compatible with the tough, damaging fibril as an end result. Researchers believed that the fibrils should come from a rigid structure called a β-sheet. The new data show, however, that both structures occur as the reaction changes over time. Transient rigid β-sheets form, then morph into floppy protein loops, which finally take the form of more β-sheets. The final β-sheets bind together and stack up to form the damaging fibrils. The focus now will be to target the new intermediate step. With more data, researchers could design an inhibitor drug to bind to the offending protein, block the molecule and halt the pathway's progression. Next, de Pablo intends to learn more about the particular protein intermediate that is implicated in type 2 diabetes. He has examined the basic units and small aggregates consisting of two or at most three molecules. "Now we need to understand how these small aggregates disrupt cell membranes," he said. "We also want to decipher how the fibril grows from a small nucleus." To do so, he is pushing forward with plans to investigate bigger systems by using more supercomputing clout. He was recently awarded computing time on Argonne's IBM Blue Gene/Q, called Mira, the newest resource available to users at the ALCF. Mira is a 10-petaflops computer that packs 10 quadrillion calculations into each second of computing time. De Pablo, Zanni and their collaborators will also apply the method from this publication to determine the intermediate steps in diseases other than type 2 diabetes, including neurodegenerative diseases like Alzheimer's. Scientists attribute more than 20 human diseases to the formation of amyloid fibrils. In each disease, the misfolding of a specific protein—a different one in every disease—is what triggers the problematic intermediate β-sheet. "We want to understand the broader origins of the misfolding and aggregation problem," de Pablo said, "which we can do by looking at a wide range of molecules associated with different diseases. The eventual goal is to answer a few vital questions: What are the early stage misfolding events and small aggregates that form? How do they form? And how can we design inhibitors to stop them from forming?" The findings are described in a paper published November 11 in the Proceedings of the National Academy of Sciences, titled "Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet." Also contributing to the research were scientists from the University of California-Irvine and the State University of New York at Stony Brook. ### Support for this research was provided by the National Science Foundation and the National Institutes of Health. The Argonne Leadership Computing Facility is supported by DOE's Office of Science. Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.


ELSE PRESS RELEASES FROM THIS DATE:

UNL research raises concerns about global crop projections

2013-12-21
UNL research raises concerns about global crop projections 30 percent of world's corn, rice and wheat crop land may be 'maxed out' LINCOLN, Neb. — About 30 percent of the major global cereal crops – rice, wheat and corn – may have reached their maximum possible ...

Penn researchers grow liquid crystal 'flowers' that can be used as lenses

2013-12-21
Penn researchers grow liquid crystal 'flowers' that can be used as lenses A team of material scientists, chemical engineers and physicists from the University of Pennsylvania has made another advance in their effort to use liquid crystals as a medium for assembling ...

NASA sees powerful Tropical Cyclone Bruce staying away from land

2013-12-21
NASA sees powerful Tropical Cyclone Bruce staying away from land Tropical Cyclone Bruce continued to strengthen over wide open waters of the Southern Indian Ocean and NASA satellite data showed its eye had cleared of clouds. Bruce is forecast to stay away from ...

Religion is good for business shows Rotman study

2013-12-21
Religion is good for business shows Rotman study Toronto – Those looking for honest companies to invest in might want to check out businesses based in more religious communities, suggests a new paper from the University of ...

Not just the Koch brothers: New Drexel study reveals funders behind the climate change denial effort

2013-12-21
Not just the Koch brothers: New Drexel study reveals funders behind the climate change denial effort A new study conducted by Drexel University's environmental sociologist Robert J. Brulle, PhD, exposes the organizational underpinnings and funding behind the powerful ...

NASA satellites see Tropical Cyclone Amara affecting Rodrigues Island

2013-12-21
NASA satellites see Tropical Cyclone Amara affecting Rodrigues Island When NASA's Terra satellite passed over Tropical Cyclone Amara on December 20, its western quadrant was already moving over Rodrigues Island, Mauritius. Warnings are already in effect for the island, ...

Even or odd: No easy feat for the mind

2013-12-21
Even or odd: No easy feat for the mind MADISON — Even scientists are fond of thinking of the human brain as a computer, following sets of rules to communicate, make decisions and find a meal. But if the brain is like a computer, why do brains make mistakes ...

Van Allen Probes shed light on decades-old mystery

2013-12-21
Van Allen Probes shed light on decades-old mystery New research using data from NASA's Van Allen Probes mission helps resolve decades of scientific uncertainty over the origin of ultra-relativistic electrons in Earth's near space environment, and is likely to ...

Virginia Tech research overturns assumption about mercury in the Arctic

2013-12-21
Virginia Tech research overturns assumption about mercury in the Arctic Mercury concentrations in fish much lower than expected For years, scientists have assumed that if mercury is high and increasing in fish in the North American and European Arctic, the same is true of fish ...

Ohio State study shows 2 drugs help adolescents with ADHD, aggression

2013-12-21
Ohio State study shows 2 drugs help adolescents with ADHD, aggression COLUMBUS, Ohio – Prescribing both a stimulant and an antipsychotic drug to children with physical aggression and attention-deficit/hyperactivity disorder (ADHD), ...

LAST 30 PRESS RELEASES:

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

[Press-News.org] A wrong molecular turn leads down the path to Type 2 diabetes