PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Acid mine drainage reduces radioactivity in fracking waste

2 wrongs could make a right in mining wastewater

2014-01-09
(Press-News.org) Contact information: Tim Lucas
tdlucas@duke.edu
919-613-8084
Duke University
Acid mine drainage reduces radioactivity in fracking waste 2 wrongs could make a right in mining wastewater DURHAM, NC -- Much of the naturally occurring radioactivity in fracking wastewater might be removed by blending it with another wastewater from acid mine drainage, according to a Duke University-led study.

"Fracking wastewater and acid mine drainage each pose well-documented environmental and public health risks. But in laboratory tests, we found that by blending them in the right proportions we can bind some of the fracking contaminants into solids that can be removed before the water is discharged back into streams and rivers," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

"This could be an effective way to treat Marcellus Shale hydraulic fracturing wastewater, while providing a beneficial use for acid mine drainage that currently is contaminating waterways in much of the northeastern United States," Vengosh said. "It's a win-win for the industry and the environment."

Blending fracking wastewater with acid mine drainage also could help reduce the depletion of local freshwater resources by giving drillers a source of usable recycled water for the hydraulic fracturing process, he added.

"Scarcity of fresh water in dry regions or during periods of drought can severely limit shale gas development in many areas of the United States and in other regions of the world where fracking is about to begin," Vengosh said. "Using acid mine drainage or other sources of recycled or marginal water may help solve this problem and prevent freshwater depletion."

The peer-reviewed study was published in late December 2013 in the journal Environmental Science & Technology.

In hydraulic fracturing – or fracking, as it is sometimes called – millions of tons of water are injected at high pressure down wells to crack open shale deposits buried deep underground and extract natural gas trapped within the rock. Some of the water flows back up through the well, along with natural brines and the natural gas. This "flowback fluid" typically contains high levels of salts, naturally occurring radioactive materials such as radium, and metals such as barium and strontium.

A study last year by the Duke team showed that standard treatment processes only partially remove these potentially harmful contaminants from Marcellus Shale wastewater before it is discharged back into streams and waterways, causing radioactivity to accumulate in stream sediments near the disposal site.

Acid mine drainage flows out of abandoned coal mines into many streams in the Appalachian Basin. It can be highly toxic to animals, plants and humans, and affects the quality of hundreds of waterways in Pennsylvania and West Virginia.

Because much of the current Marcellus shale gas development is taking place in regions where large amounts of historic coal mining occurred, some experts have suggested that acid mine drainage could be used to frack shale gas wells in place of fresh water.

To test that hypothesis, Vengosh and his team blended different mixtures of Marcellus Shale fracking wastewater and acid mine drainage, all of which were collected from sites in western Pennsylvania and provided to the scientists by the industry.

After 48 hours, the scientists examined the chemical and radiological contents of 26 different mixtures. Geochemical modeling was used to simulate the chemical and physical reactions that had occurred after the blending; the results of the modeling were then verified using x-ray diffraction and by measuring the radioactivity of the newly formed solids.

"Our analysis suggested that several ions, including sulfate, iron, barium and strontium, as well as between 60 and 100 percent of the radium, had precipitated within the first 10 hours into newly formed solids composed mainly of strontium barite," Vengosh said. These radioactive solids could be removed from the mixtures and safely disposed of at licensed hazardous-waste facilities, he said. The overall salinity of the blended fluids was also reduced, making the treated water suitable for re-use at fracking sites.

"The next step is to test this in the field. While our laboratory tests show that is it technically possible to generate recycled, treated water suitable for hydraulic fracturing, field-scale tests are still necessary to confirm its feasibility under operational conditions," Vengosh said.

### Andrew J. Kondash, a master's student in Vengosh's lab at Duke, was the lead author of the new study. Nathaniel R. Warner, a 2013 PhD graduate of Duke now at Dartmouth University, and Ori Lahav of Technion, in Haifa, Israel, who spent his sabbatical leave at Duke last year, were co-authors.

Funding for the study was provided by Duke's Nicholas School, and partly by a National Science Foundation Partnerships for International Research and Education grant (NSF-OISE-12-43433).

CITATION: "Radium and Barium Removal through Blending Hydraulic Fracturing Fluids with Acid Mine Drainage," Andrew J. Kondash, Nathaniel R. Warner, Ori Lahav, Avner Vengosh. Environmental Science & Technology, Dec. 24, 2013, http://dx.doi.org/10.1021/es403852h


ELSE PRESS RELEASES FROM THIS DATE:

When charitable acts are 'tainted' by personal gain

2014-01-09
When charitable acts are 'tainted' by personal gain We tend to perceive a person's charitable efforts as less moral if the do-gooder reaps a reward from the effort, according to new research. This phenomenon — which researchers call ...

A powerful technique to further understanding of RNA

2014-01-09
A powerful technique to further understanding of RNA Qi Zhang sees himself as a warrior. In his lab at the University of North Carolina at Chapel Hill, he wages war on genetic diseases such as cancer and heart disease on a battlefield measured ...

Extraordinary sensors pushed to their boundaries

2014-01-09
Extraordinary sensors pushed to their boundaries A new step is being taken in the development of ultra-stable sensors of small forces Last year, Tobias Kippenberg and his team from the Laboratory of Photonics and Quantum Measurements ...

Funding problems threaten US disaster preparedness

2014-01-09
Funding problems threaten US disaster preparedness A study by researchers at the George Washington University, the University of Southern California, and the Cabarrus Health Alliance lists seven recommendations to enhance preparedness for public health emergencies ...

Iconic Australasian trees found as fossils in South America

2014-01-09
Iconic Australasian trees found as fossils in South America Today in Australia they call it Kauri, in Asia they call it Dammar, and in South America it does not exist at all unless planted there; but 52 million years ago the giant coniferous evergreen tree known to botanists ...

Unravelling the web of a cosmic creeply-crawly

2014-01-09
Unravelling the web of a cosmic creeply-crawly This new Hubble image is the best-ever view of a cosmic creepy-crawly known as the Tarantula Nebula, a region full of star clusters, glowing gas, and dark dust. Astronomers are exploring and mapping ...

A galaxy with 2 hearts

2014-01-09
A galaxy with 2 hearts This new Hubble image shows the spiral galaxy Messier 83, otherwise known as the Southern Pinwheel Galaxy. One of the largest and closest barred spirals to us, this galaxy is dramatic and mysterious; it has hosted a large number ...

Inappropriate antibiotic use in emergency rooms not decreasing in adults

2014-01-09
Inappropriate antibiotic use in emergency rooms not decreasing in adults An analysis of emergency room (ER)visits over a 10-year period finds that while inappropriate antibiotic use is decreasing in pediatric settings, it continues to remain a problem in adults, ...

New study: US power plant emissions down

2014-01-09
New study: US power plant emissions down Power plants that use natural gas and a new technology to squeeze more energy from the fuel release far less of the greenhouse gas carbon dioxide than coal-fired power plants do, according to a new analysis accepted ...

Scientists uncover new target for brain cancer treatment

2014-01-09
Scientists uncover new target for brain cancer treatment A new study is giving researchers hope that novel targeted therapies can be developed for glioblastoma multiforme (GBM), the most common and most aggressive form of brain cancer, after demonstrating for ...

LAST 30 PRESS RELEASES:

Elucidating liquid-liquid phase separation under non-equilibrium conditions

Fecal microbiome and bile acid profiles differ in preterm infants with parenteral nutrition-associated cholestasis

The Institute of Science and Technology Austria (ISTA) receives €5 million donation for AI research

Study finds link between colorblindness and death from bladder cancer

Tailored treatment approach shows promise for reducing suicide and self-harm risk in teens and young adults

Call for papers: AI in biochar research for sustainable land ecosystems

Methane eating microbes turn a powerful greenhouse gas into green plastics, feed, and fuel

Hidden nitrogen in China’s rice paddies could cut fertilizer use

Texas A&M researchers expose hidden risks of firefighter gear in an effort to improve safety and performance

Wood burning in homes drives dangerous air pollution in winter

The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: January 23, 2026

ISSCR statement in response to new NIH policy on research using human fetal tissue (Notice NOT-OD-26-028)

Biologists and engineers follow goopy clues to plant-wilting bacteria

What do rats remember? IU research pushes the boundaries on what animal models can tell us about human memory

Frontiers Science House: did you miss it? Fresh stories from Davos – end of week wrap

Watching forests grow from space

New grounded theory reveals why hybrid delivery systems work the way they do

CDI scientist joins NIH group to improve post-stem cell transplant patient evaluation

Uncovering cancer's hidden oncRNA signatures: From discovery to liquid biopsy

Multiple maternal chronic conditions and risk of severe neonatal morbidity and mortality

Interactive virtual assistant for health promotion among older adults with type 2 diabetes

Ion accumulation in liquid–liquid phase separation regulates biomolecule localization

Hemispheric asymmetry in the genetic overlap between schizophrenia and white matter microstructure

Research Article | Evaluation of ten satellite-based and reanalysis precipitation datasets on a daily basis for Czechia (2001–2021)

Nano-immunotherapy synergizing ferroptosis and STING activation in metastatic bladder cancer

Insilico Medicine receives IND approval from FDA for ISM8969, an AI-empowered potential best-in-class NLRP3 inhibitor

Combined aerobic-resistance exercise: Dual efficacy and efficiency for hepatic steatosis

Expert consensus outlines a standardized framework to evaluate clinical large language models

Bioengineered tissue as a revolutionary treatment for secondary lymphedema

Forty years of tracking trees reveals how global change is impacting Amazon and Andean Forest diversity

[Press-News.org] Acid mine drainage reduces radioactivity in fracking waste
2 wrongs could make a right in mining wastewater