PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Mystery solved: How nerve impulse generators get where they need to go

Study identifies essential molecule for transport of protein from neuron cell body to axon

2014-01-09
(Press-News.org) Contact information: Chen Gu
Gu.49@osu.edu
614-292-0349
Ohio State University
Mystery solved: How nerve impulse generators get where they need to go Study identifies essential molecule for transport of protein from neuron cell body to axon

COLUMBUS, Ohio – Scientists have solved a longstanding mystery of the central nervous system, showing how a key protein gets to the right spot to launch electrical impulses that enable communication of nerve signals to and from the brain.

Nerve impulses are critical because they are required for neurons to send information about senses, movement, thinking and feeling to other cell types in the neural circuitry. And an impulse is not fired up just once; it is initiated and then must be repeatedly transmitted along axons – long, slender extensions of nerve cell bodies – to keep the nervous system's messages stable during their rapid travel.

For example, if your finger touches a hot stove, nerve impulses support quick communication between nerve cells in the hand and the brain so you avoid a serious burn.

This new research reveals a part of the process that was not understood before, about how a "molecular motor" helps move the impulse generator to its proper place on an axon to perform this vital job.

"This study is solving a very fundamental question," said Chen Gu, assistant professor of neuroscience at The Ohio State University and lead author of the paper. "If these channel proteins don't get into the nerves, nothing happens. They have to be correctly delivered and inserted into the axon to be functional."

The research is published online in the journal Developmental Cell and will appear in the Jan. 27 print issue.

Like most proteins, the molecule that initiates nerve impulses is made in the cell body of a neuron, or nerve cell. But this protein, called a sodium ion channel, does its work on and between insulated segments of axons. Since nerve impulses were discovered in the 1950s, scientists have been unable to describe how the sodium channel gets to where it needs to be to initiate these electrical signals.

Previous research had shown that the sodium channel is anchored in axons through another protein. In this new study, Ohio State researchers identified a third molecule in the process: a motor protein that creates mechanical force to move the sodium channel and its partner protein from the cell body into the axon.

The research could help explain the deepest origins of many neurological disorders – ranging from multiple sclerosis and Parkinson's disease to injuries of the spinal cord and brain – that are traced to malfunctioning or degenerated axons and the resulting improper electrical signaling.

Gu is a longtime expert in research about the potassium ion channel, which is at the other end of a nerve impulse. This channel shuts off the signal, letting the axon rest and prepare for the next impulse to come along. His group has already gained deep understanding of how potassium channels get into the axon.

The research team accidentally found the binding between the anchor and motor proteins several years ago, which eventually led to the discovery of this transporting mechanism concerning the sodium channel. This channel is difficult to study because it is a large and complicated molecule relative to other players in the process.

The anchor protein, called ankyrin-G, is known to be tethered to sodium channel proteins once they reach axons. It is an adapter protein that helps other molecules connect, and is concentrated on axons close to the cell body as well as in regions called the nodes of Ranvier, which are gaps between axon segments (think of twisted casings between sausage links). These gaps are important to signal transmission because nerve impulses must jump across them to maintain the flow of communication.

The motor protein, called kinesin-1, hooks up with ankyrin-G at the same time ankyrin-G is attached to the sodium channel. As a motor protein, kinesin-1 can produce mechanical force by making use of a specific energy source in cells. In an unusual scenario, both the sodium channel and kinesin-1 can connect with ankyrin-G at the same time using multiple binding sites.

"This allows ankyrin-G to bind to the sodium channel and the motor protein simultaneously so they can form a complex. Ankyrin-G plays its adapter role by loading the sodium channel onto the motor protein. Then the motor protein can act like a cargo carrier, transporting the sodium channel to the axon," Gu said.

The researchers confirmed this process by observing the three proteins traveling together along an axon using live-cell imaging, as well as in studies using animals. Mice missing ankyrin-G in the cerebellum lacked the ability to move the sodium channels, and injecting a piece of the kinesin-1 molecule into the brains of normal mice interfered with the three-way protein interaction, also leaving the sodium channel proteins stuck in the cell body.

"We have identified protein-to-protein interactions between three very important and evolutionarily conserved molecules. We also found that if we damage the interaction using different strategies, the sodium channel won't be transported," Gu said.

"Mutations in the genes encoding the three proteins can lead to some neurological and mental disorders in humans. In many other diseases, the primary defect initiated by something else can alter the function of these three proteins – and particularly sodium channel transport and function – and ultimately disrupt the nerve impulse," he said. "If the sodium channel can't conduct the nerve impulse anymore, that gives rise to symptoms of neurological disorders."



INFORMATION:

This work was mainly supported by grants from the National Institutes of Health, including the National Institute of Neurological Disorders and Stroke.

Gu is a faculty member in Ohio State's Molecular, Cellular and Developmental Biology Graduate Program (MCDB) and Biomedical Sciences Graduate Program (BSGP). The authors of this study include Joshua Barry, an MCDB graduate student who is now in postdoc training at UCLA; and Yuanzheng Gu of the Department of Neuroscience; Peter Jukkola of the BSGP; Brian O'Neill, Howard Gu and Keerthi Thirtamara Rajamani of the Department of Pharmacology; and Peter Mohler of the Davis Heart and Lung Research Institute and the departments of Internal Medicine and Physiology and Cell Biology, all at Ohio State.



ELSE PRESS RELEASES FROM THIS DATE:

Surprising new class of 'hypervelocity stars' discovered escaping the galaxy

2014-01-09
Surprising new class of 'hypervelocity stars' discovered escaping the galaxy An international team of astronomers has discovered a surprising new class of "hypervelocity stars" – solitary stars moving fast enough to escape the gravitational grasp of ...

Study of Nepalese pilgrims challenges diagnosis of acute mountain sickness

2014-01-09
Study of Nepalese pilgrims challenges diagnosis of acute mountain sickness A study led by University of British Columbia scientists calls into question a widely used method of diagnosing acute mountain sickness. The Lake Louise Score Questionnaire has ...

A new pathway for neuron repair is discovered

2014-01-09
A new pathway for neuron repair is discovered Penn State University molecular biologists have discovered a brand-new pathway for repairing nerve cells that could have implications for faster and improved healing. The researchers describe their findings in a paper titled "Dendrite ...

Microalgae and aquatic plants can help to decrease radiopollution in the Fukushima area

2014-01-09
Microalgae and aquatic plants can help to decrease radiopollution in the Fukushima area Springer's Journal of Plant Research presents the results of a 2-year investigation in a special issue After a huge earthquake caused severe damage to the Fukushima 1 Nuclear Power ...

La Jolla Institute scientist identifies pivotal cellular protein underlying eczema

2014-01-09
La Jolla Institute scientist identifies pivotal cellular protein underlying eczema Discovery opens new therapeutic avenue for chronic skin condition affecting millions SAN DIEGO – (January 9th, 2014) Researchers from the La Jolla Institute for Allergy ...

Unfit, lean people are better protected against heart attacks than fit, obese people

2014-01-09
Unfit, lean people are better protected against heart attacks than fit, obese people In a study published in the European Heart Journal, a research team at Umeå University, Sweden, has shown that physical fitness in your teens can reduce the risk of heart ...

EU policy is driving up demand for pollination faster than honeybee numbers

2014-01-09
EU policy is driving up demand for pollination faster than honeybee numbers Research conducted by the University of Reading's Centre for Agri-Environmental Research, and funded by the EU FP7 project STEP and the Insect Pollinators Initiative Crops project, indicates that ...

A good outcome for the CHILD-INNOVAC project: successful test in humans of a nasal vaccine against pertussis

2014-01-09
A good outcome for the CHILD-INNOVAC project: successful test in humans of a nasal vaccine against pertussis The CHILD-INNOVAC European research programme, coordinated by Inserm, has enabled the development ...

Eye-catching electronics

2014-01-09
Eye-catching electronics Thin film transistors on parylene membrane This news release is available in German. Niko Münzenrieder submerges a ficus leaf in water containing pieces of a shiny metallic membrane. Using tweezers, he carefully moves one of ...

Cancer drug protects against diabetes

2014-01-09
Cancer drug protects against diabetes Very low doses of a drug used to treat certain types of cancer protect the insulin-producing cells in the pancreas and prevent the development of diabetes mellitus type 1 in mice. The medicine works by lowering the ...

LAST 30 PRESS RELEASES:

Firms raise the bar after missing the target: Strategic use of overestimated earnings targets

Pusan National University scientists uncover gene mutation tied to poor outcomes in transplant patients

How a common herpes virus outsmarts the immune system

Breakthrough resins speed up 3D printing with built-in material control

BCI robotic hand control reaches new finger-level milestone

Neurons burn sugar differently. The discovery could save the brain

AI matches doctors in mapping lung tumors for radiation therapy

A rare form of leprosy existed in the Americas for thousands of years

Researchers identify genetic bottlenecks that explain the emergence of cholera

Tests to detect marijuana-impaired driving based on ‘pseudoscience’

Pigments that can do more

How to refocus in the age of distraction

The rise of 'artificial historians': AI as humanity’s record-keeper

Older paternal age linked to higher miscarriage risk and lower live birth rates in donor egg IVF cycles, new study finds

New study provides breakthrough in pig-to-human kidney transplantation

Gut bacteria and amino acid imbalance linked to higher miscarriage risk in women with PCOS

Simple blood test detects preeclampsia risk months before symptoms appear, new study shows

3D printing breakthrough: Scientists create functional human islets for type 1 diabetes treatment

Malnutrition in children rises when economy drops

New model enables the study of how protein complex influences mitochondrial function

Device study offers hopes for spinal cord injuries

How urea forms spontaneously

Mayo Clinic’s AI tool identifies 9 dementia types, including Alzheimer’s, with one scan

Gene therapy improves blood flow in the brain in patients with sickle cell disease

Building breast tissue in the lab to better understand lactation

How gut bacteria change after exposure to pesticides

Timepoint at which developing B-cells become cancerous impacts leukemia treatment

Roberto Morandotti wins prestigious IEEE Photonics Society Quantum Electronics Award 

New urine-based tumor DNA test may help personalize bladder cancer treatment

How a faulty transport protein in the brain can trigger severe epilepsy

[Press-News.org] Mystery solved: How nerve impulse generators get where they need to go
Study identifies essential molecule for transport of protein from neuron cell body to axon