(Press-News.org) Contact information: Federica Sgorbissa
pressroom@sissa.it
0039-040-378-7644
International School of Advanced Studies (SISSA)
Molecules as circuits
The Kondo effect can improve a molecule's conductivity
Silicon-based electronics has certain limits, in the physical sense of the word: this type of circuit can never become "nano" because of the physical laws governing the flow of electrons. This imposes a halt to the process of miniaturization of electronic devices. One of the possible solutions is to use molecules as circuits, but their poor conduction capabilities make them unlikely candidates. There is, however, a possible way around this, which was investigated in a recent paper published in Proceedings of the National Academy of Sciences (PNAS) by an international research team that includes Ryan Requist, Erio Tosatti and Michele Fabrizio of the International School for Advanced Studies (SISSA) in Trieste.
The Kondo effect, first described last century by the Japanese physicist Jun Kondo, is observed when magnetic impurities, i.e., very few atoms (even only 1 in 1000) of magnetic material such as iron are added to metals like gold or copper. Even molecules like nitric oxide behave like magnetic impurities: when located between metal electrodes they give rise to a Kondo effect. This effect, as the study authors show, could be exploited to change the conductance between the two electrodes. Requist and Tosatti created a computer model of the Kondo effect under these conditions and formulated predictions on the behaviour of the molecules. These were then tested in experiments carried out by the experimental physicists involved in the study.
The results are encouraging: "Our work demonstrates for the first time that we can predict the Kondo effect quantitatively and it offers a theoretical basis for similar calculations with larger and more complex molecules. In the future it might be helpful when searching for the most appropriate molecules for these purposes", commented Requist.
More in detail…
The Kondo effect occurs when the presence of a magnetic atom (an impurity) causes the movement of electrons in a material to behave in a peculiar way.
"Every electron has a mechanical or magnetic rotation moment, termed spin", explains Erio Tosatti. "Kondo is a phenomenon related to the spin of metal electrons when they encounter a magnetic impurity. The free metal electrons cluster around the impurity and "screen it out" so that it can no longer be detected, at least so long as the temperature is sufficiently low". This results in specific properties of the material, for example an increase in electrical resistance.
"Conversely, in conditions involving very small size scales (the tip of a tunnelling electron microscope) such as those used in this study, the result is instead an increase in conductivity", explains Requist.
###
The research collaboration that carried out the study saw the participation of SISSA, CNR-IOM Democritos, ICTP, the University of Trieste, the University of Technology of Dresden and the French Alternative Energies and Atomic Energy Commission (CEA).
Molecules as circuits
The Kondo effect can improve a molecule's conductivity
2014-01-23
ELSE PRESS RELEASES FROM THIS DATE:
Tracing unique cells with mathematics
2014-01-23
This news release is available in German.
Each cell in our body is unique. Even cells of the same tissue type that look identical under the ...
NCCS scientists discover gene regulation is dependent on protein ANP32E
2014-01-23
PUBLIC RELEASE DATE: 23-Jan-2014
[
| E-mail
]
var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more"
Share
Contact: Ms Rachel Tan
Rachel.Tan.C.H@nccs.com.sg
659-754-0842
SingHealth
NCCS scientists discover gene regulation is dependent on protein ANP32E
Architecture of DNA is maintained by a protein called ANP32E; Cells lacking ANP32E lacked proper chromatin structure; ANP32E's ability to strip histone H2A.Z from DNA can alter gene expression; Findings ...
Cultural connections with Europe found in ancient Jordanian settlement
2014-01-23
Swedish archaeologists in Jordan led by Professor Peter M. Fischer from the University of Gothenburg have excavated a nearly 60-metre long well-preserved building from 1100 B.C. ...
Near error-free wireless detection made possible
2014-01-23
The accuracy and range of radio frequency identification (RFID) systems, which are used in everything from passports to luggage tracking, could be vastly improved thanks to a new system developed by ...
Insulin-producing beta cells from stem cells
2014-01-23
The findings of the scientists of the Institute of Diabetes and Regeneration Research ...
Choose your love
2014-01-23
To test whether female mate choice enhances the health and disease-resistance of offspring, either through immune resistance, tolerance to infection, ...
Mitochondrial ribosome revealed
2014-01-23
The ribosome can be thought of as a decryption device housed within the cell. It is able to decipher the genetic code, which is delivered in the form of messenger ribonucleic acid (mRNA), and translate it into ...
New microscopy technique improves imaging at the atomic scale
2014-01-23
When capturing images at the atomic scale, even tiny movements of the sample can result in skewed or distorted images – and those movements are virtually impossible to prevent. Now microscopy ...
Detecting sickness by smell
2014-01-23
Humans are able to smell sickness in someone whose immune system is highly active within just a few hours of exposure to a toxin, according to new research published in Psychological Science, a journal of the ...
Interventions work to stem freshman drinking
2014-01-23
PROVIDENCE, R.I. [Brown University] -- A new systematic review of data published in more than 40 studies of freshman alcohol interventions finds that there are many effective ways for colleges to mitigate common drinking ...
LAST 30 PRESS RELEASES:
How rice plants tell head from toe during early growth
Scientists design solar-responsive biochar that accelerates environmental cleanup
Construction of a localized immune niche via supramolecular hydrogel vaccine to elicit durable and enhanced immunity against infectious diseases
Deep learning-based discovery of tetrahydrocarbazoles as broad-spectrum antitumor agents and click-activated strategy for targeted cancer therapy
DHL-11, a novel prieurianin-type limonoid isolated from Munronia henryi, targeting IMPDH2 to inhibit triple-negative breast cancer
Discovery of SARS-CoV-2 PLpro inhibitors and RIPK1 inhibitors with synergistic antiviral efficacy in a mouse COVID-19 model
Neg-entropy is the true drug target for chronic diseases
Oxygen-boosted dual-section microneedle patch for enhanced drug penetration and improved photodynamic and anti-inflammatory therapy in psoriasis
Early TB treatment reduced deaths from sepsis among people with HIV
Palmitoylation of Tfr1 enhances platelet ferroptosis and liver injury in heat stroke
Structure-guided design of picomolar-level macrocyclic TRPC5 channel inhibitors with antidepressant activity
Therapeutic drug monitoring of biologics in inflammatory bowel disease: An evidence-based multidisciplinary guidelines
New global review reveals integrating finance, technology, and governance is key to equitable climate action
New study reveals cyanobacteria may help spread antibiotic resistance in estuarine ecosystems
Around the world, children’s cooperative behaviors and norms converge toward community-specific norms in middle childhood, Boston College researchers report
How cultural norms shape childhood development
University of Phoenix research finds AI-integrated coursework strengthens student learning and career skills
Next generation genetics technology developed to counter the rise of antibiotic resistance
Ochsner Health hospitals named Best-in-State 2026
A new window into hemodialysis: How optical sensors could make treatment safer
High-dose therapy had lasting benefits for infants with stroke before or soon after birth
‘Energy efficiency’ key to mountain birds adapting to changing environmental conditions
Scientists now know why ovarian cancer spreads so rapidly in the abdomen
USF Health launches nation’s first fully integrated institute for voice, hearing and swallowing care and research
Why rethinking wellness could help students and teachers thrive
Seabirds ingest large quantities of pollutants, some of which have been banned for decades
When Earth’s magnetic field took its time flipping
Americans prefer to screen for cervical cancer in-clinic vs. at home
Rice lab to help develop bioprinted kidneys as part of ARPA-H PRINT program award
Researchers discover ABCA1 protein’s role in releasing molecular brakes on solid tumor immunotherapy
[Press-News.org] Molecules as circuitsThe Kondo effect can improve a molecule's conductivity