(Press-News.org) Contact information: A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481
Penn State
Experiments show hypothesis of microtubule steering accurate
VIDEO:
This is a movie of a polymerizing microtubule (originating in bottom left corner) encountering a static microtubule in middle of screen. During the encounter the polymerizing microtubule is bent...
Click here for more information.
Tiny protein motors in cells can steer microtubules in the right direction through branching nerve cell structures, according to Penn State researchers who used laboratory experiments to test a model of how these cellular information highways stay organized in living cells.
"We proposed a model of how it works in vivo, in the living cell," said Melissa Rolls, associate professor of biochemistry and molecular biology. "But because of the complexity of the living cells, we couldn't tell if the model was possible."
Rolls then collaborated with William O. Hancock, professor of biomedical engineering, who was already working on the tiny kinesin motors that move materials throughout the cell, to test the model in the laboratory, in vitro.
"Kinesins are little machines that use chemical energy to generate mechanical forces sufficient to carry materials through the cell," said Hancock.
Cells produce enzymes, proteins and signaling chemicals in the center of the cell, and these materials are then moved to other cell areas by kinesin motors. Dendrites in nerves cells are very long, and motors need to transport molecules relatively long distances on microtubules that are constantly forming and dissolving within the cell. Because dendrites branch, the researchers wondered how the microtubules themselves move in the right direction.
Working with Yalei Chen, graduate student in cell and developmental biology in the Huck Institutes of the Life Sciences, the researchers found that kinesin motors can not only transport molecules along the tubules, but can redirect the ends of the tubules to enter the proper branch of the dendrite. They report their findings online today (Jan. 23) in Current Biology.
In the laboratory, the researchers grew microtubules under the microscope and used protein engineering to attach a kinesin motor to EB1 -- a protein that binds to the growing end of microtubules.
"One of the reasons we thought the model might not work is that the molecule EB1 grabs the plus end of the microtubule very loosely," said Rolls. "We were unsure how something so dynamic could hold the forces, but it does."
The researchers found that it is a form of crowd sourcing -- while one molecule is only loosely bound and releases quickly, the microtubule's plus end is surrounded by hundreds of these molecules so the EB1 can guide the motor protein where to go. The kinesin motor walks along a stationary microtubule until it enters the branch.
In the laboratory, the combination EB1 and kinesin motor moved the microtubule ends far enough for redirection into branches.
The researchers state that "EB1 kinetics and mechanics are sufficient to bend microtubules for several seconds." They also suggest that "other kinesins also demonstrate this activity, suggesting this is a general mechanism for organizing and maintaining proper microtubule polarity in cells."
INFORMATION:
The National Institutes of Health supported this work.
Experiments show hypothesis of microtubule steering accurate
2014-01-23
ELSE PRESS RELEASES FROM THIS DATE:
What makes cell division accurate?
2014-01-23
Baltimore, MD— As all school-children learn, cells divide using a process called mitosis, which consists of a number of phases during which duplicate copies of the cell's DNA-containing chromosomes are pulled apart and separated into two distinct ...
Ancient forests stabilized Earth's CO2 and climate
2014-01-23
UK researchers have identified a biological mechanism that could explain how the Earth's atmospheric carbon dioxide and climate were stabilised over the past 24 million years. When CO2 levels became ...
Brain uses serotonin to perpetuate chronic pain signals in local nerves
2014-01-23
Setting the stage for possible advances in pain treatment, researchers at The Johns Hopkins University and the University of Maryland ...
Sniffed out -- The 'gas detectors' of the plant world
2014-01-23
The elusive trigger that allows plants to 'see' the gas nitric oxide (NO), an important signalling molecule, has been tracked down by scientists at The University of Nottingham. It is the first ...
Does it pay to be a lover or a fighter? It depends on how you woo females
2014-01-23
As ...
A time for memories
2014-01-23
Neuroscientists from the University of Leicester, in collaboration with the Department of Neurosurgery at ...
Long-term spinal cord stimulation stalls symptoms of Parkinson's-like disease
2014-01-23
DURHAM, N.C. -- Researchers at Duke Medicine have shown that continuing spinal cord stimulation appears to produce improvements in symptoms of Parkinson's disease, and ...
Large and in charge
2014-01-23
Bigger really is better – at least it was for early prehistoric life.
A NASA research group featuring University of Toronto Mississauga professor Marc Laflamme has helped to explain why some ...
Climate change threatens Winter Olympics
2014-01-23
Only six of the previous Winter Olympics host cities will be cold enough to reliably host the Games by the end of this century if global warming projections ...
Cohabitation plays 'major role' in number of long-term relationships
2014-01-23
COLUMBUS, Ohio – A new national study provides surprising evidence of how cohabitation contributes to the number of long-term relationships ...