PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Lab-grown, virus-free stem cells repair retinal tissue in mice

2014-01-24
(Press-News.org) Contact information: Vanessa Wasta
wasta@jhmi.edu
410-614-2916
Johns Hopkins Medicine
Lab-grown, virus-free stem cells repair retinal tissue in mice Investigators at Johns Hopkins report they have developed human induced-pluripotent stem cells (iPSCs) capable of repairing damaged retinal vascular tissue in mice. The stem cells, derived from human umbilical cord-blood and coaxed into an embryonic-like state, were grown without the conventional use of viruses, which can mutate genes and initiate cancers, according to the scientists. Their safer method of growing the cells has drawn increased support among scientists, they say, and paves the way for a stem cell bank of cord-blood derived iPSCs to advance regenerative medicine research.

In a report published Jan. 20 in the journal Circulation, stem cell biologist Elias Zambidis, M.D., Ph.D., and his colleagues describe laboratory experiments with these non-viral, human retinal iPSCs, created using the virus-free method Zambidis first reported in 2011.

"We began with stem cells taken from cord-blood, which have fewer acquired mutations and little, if any, epigenetic memory, which cells accumulate as time goes on," says Zambidis, associate professor of oncology and pediatrics at the Johns Hopkins Institute for Cell Engineering and the Kimmel Cancer Center. The scientists converted these cells to a status last experienced when they were part of six-day-old embryos.

Instead of using viruses to deliver a gene package to the cells to turn on processes that convert the cells back to stem cell states, Zambidis and his team used plasmids, rings of DNA that replicate briefly inside cells and then degrade.

Next, the scientists identified high-quality, multipotent, vascular stem cells generated from these iPSC that can make a type of blood vessel-rich tissue necessary for repairing retinal and other human material. They identified these cells by looking for cell surface proteins called CD31 and CD146. Zambidis says that they were able to create twice as many well-functioning vascular stem cells as compared with iPSCs made with other methods, and, "more importantly these cells engrafted and integrated into functioning blood vessels in damaged mouse retina."

Working with Gerard Lutty, Ph.D., and his team at Johns Hopkins' Wilmer Eye Institute, Zambidis' team injected the newly derived iPSCs into mice with damaged retinas, the light-sensitive part of the eyeball. Injections were given in the eye, the sinus cavity near the eye or into a tail vein. When the scientists took images of the mice retinas, they found that the iPSCs, regardless of injection location, engrafted and repaired blood vessel structures in the retina.

"The blood vessels enlarged like a balloon in each of the locations where the iPSCs engrafted," says Zambidis. The scientists said their cord blood-derived iPSCs compared very well with the ability of human embryonic-derived iPSCs to repair retinal damage.

Zambidis says there are plans to conduct additional experiments of their cells in diabetic rats, whose conditions more closely resemble human vascular damage to the retina than the mouse model used for the current study, he says.

With mounting requests from other laboratories, Zambidis says he frequently shares his cord blood-derived iPSC with other scientists. "The popular belief that iPSCs therapies need to be specific to individual patients may not be the case," says Zambidis. He points to recent success of partially matched bone marrow transplants in humans, shown to be equally as effective as fully matched transplants.

"Support is growing for building a large bank of iPSCs that scientists around the world can access," says Zambidis, although large resources and intense quality- control would be needed for such a feat. However, Japanese scientists led by stem-cell pioneer Shinya Yamanaka are doing exactly that, he says, creating a bank of stem cells derived from cord-blood samples from Japanese blood banks.

INFORMATION:

Experiments published in Zambidis' Circulation article were funded by grants from the Maryland Stem Cell Research Fund, the National Institutes of Health's National Heart, Lung and Blood Institute (HL099775, HL100397), National Eye Institute (EY09357), National Cancer Institute (CA60441); and Research to Prevent Blindness.

Under a licensing agreement between Life Technologies and the Johns Hopkins University, Zambidis is entitled to a share of royalties received by the University for licensing of stem cells. The terms of this arrangement are managed by Johns Hopkins University in accordance with its conflict-of-interest policies.

Scientists contributing to the research include Tea Soon Park, Imran Bhutto, Ludovic Zimmerlin, Jeffrey Huo, Pratik Nagaria, Connie Talbot, Jack Auilar, Rhonda Grebe, Carol Merges, and Gerard Lutty from Johns Hopkins; Diana Miller, Ricardo Feldman and Reyruz Rassool from the University of Maryland School of Medicine; Abdul Jalil Rufaihah, Renee Reijo-Pera, and John Cooke from Stanford University.

*Available upon request is an image of iPSC-derived vascular stem cells incorporating into a damaged retinal blood vessel and repairing it.

On the Web:

Related news release: Johns Hopkins Researchers Return Blood Cells to Stem Cell State

Media Contacts: Vanessa Wasta, 410-614-2916, wasta@jhmi.edu
Amy Mone, 410-614-2915, amone@jhmi.edu

END



ELSE PRESS RELEASES FROM THIS DATE:

A scientific first: Physicists, physicians, engineers photograph radiation beams in the human body through the Cherenkov effect

2014-01-24
(Lebanon, NH 1/22/14) — A scientific breakthrough may give the field of radiation oncology new tools ...

Putting a brake on tumor spread

2014-01-24
A team of scientists, led by principal investigator David D. Schlaepfer, PhD, a professor in the Department of Reproductive Medicine at the University of California, San Diego School of Medicine, has found that a protein ...

Exploring the roots of the problem: How a South American tree adapts to volcanic soils

2014-01-24
Soils ...

Patients receiving ADT should be counseled to improve mental and emotional well-being

2014-01-24
New York, NY, January 23, 2014 – A new study published in the Journal ...

Aspirin intake may stop growth of vestibular schwannomas/acoustic neuromas

2014-01-24
BOSTON (Jan. 24, 2014) — Researchers from Massachusetts Eye and Ear, Harvard Medical School, ...

Study identifies gene tied to motor neuron loss in ALS

2014-01-23
NEW YORK, NY (January 22, 2014) — Columbia University Medical Center (CUMC) researchers have ...

A pill 'melts away' common form of leukemia

2014-01-23
NEW YORK (January 22, 2014) -- Use of a twice-daily pill could turn a deadly blood cancer into a highly treatable disease, ...

Obesity in mothers alters babies' weight through brain rewiring

2014-01-23
Obese mothers are more likely to have children with metabolic disorders such as diabetes compared with thin mothers, but the underlying molecular and cellular reasons for this effect have been unclear. A study ...

To stay a step ahead of breast cancer, make a map of the future

2014-01-23
Cancer isn't a singular disease, even when talking about one tumor. A tumor consists of a varied mix of cells whose complicated arrangement changes all the time, especially and most vexingly as doctors and patients ...

Mother's high-fat diet alters metabolism in offspring, leading to higher obesity risk

2014-01-23
The offspring of obese mothers consuming a high-fat diet during pregnancy are at a higher risk than the children of thin mothers for lifelong obesity, and related metabolic disorders. ...

LAST 30 PRESS RELEASES:

Oil cleanup agents do not impede natural biodegradation

AI algorithm can help identify high-risk heart patients to quickly diagnose, expedite, and improve care

Telemedicine had an impact on carbon emissions equivalent to reducing up to 130,000 car trips each month in 2023

Journalist David Zweig analyzes American schools, the virus, and a story of bad decisions

Endocrine Society names Tena-Sempere as next Editor-in-Chief of Endocrinology

Three-dimensional gene hubs may promote brain cancer

Liquid biopsy: A breakthrough technology in early cancer screening

Soaring insurance costs top concern for Floridians, FAU survey finds

In US, saving money is top reason to embrace solar power

Antibiotic pollution in rivers

Join the nation of lifesavers at NFL draft in Green Bay

TTUHSC researchers seek novel therapies for chronic pain

Predicting long-term psychedelic side-effects

Carnegie Mellon researchers create transformable flat-to-shape objects using sewing technology

Preventing cellular senescence to prevent neuroinflammation

Tuning in to blood glucose for simpler early diabetes detection

NUS Medicine and HeyVenus study: Menopause is a critical workplace challenge for APAC business leaders

Insects are disappearing due to agriculture – and many other drivers, new research reveals

Blends of child and best friend, with power imbalance: How dogs fit into our social networks

Transgene-free genome editing in poplar trees: A step toward sustainable forestry

Single-dose psychedelic boosts brain flexibility for weeks, peer-reviewed study finds

Sex differences drive substance use patterns in panic disorder patients

Multi-omics meets immune profiling in the quest to decode disease risk

Medication-induced sterol disruption: A silent threat to brain development and public health

Shining a light on DNA: a rapid, ultra-sensitive, PCR-free detection method

European hares are thriving in the city: New monitoring methods reveal high densities in Danish urban areas

Study: middle-aged Americans are lonelier than adults in other countries, age groups

World’s leading science competition identifies 19 breakthrough solutions around the globe with greatest potential to tackle the planetary crisis

Should farm fields be used for crops or solar? MSU research suggests both

Study: Using pilocarpine drops post goniotomy may reduce long-term glaucoma medication needs

[Press-News.org] Lab-grown, virus-free stem cells repair retinal tissue in mice