PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Graphene-like material made of boron a possibility, experiments suggest

2014-01-27
(Press-News.org) Contact information: Kevin Stacey
kevin_stacey@brown.edu
401-863-3766
Brown University
Graphene-like material made of boron a possibility, experiments suggest

PROVIDENCE, R.I. [Brown University] — Researchers from Brown University have shown experimentally that a boron-based competitor to graphene is a very real possibility.

Graphene has been heralded as a wonder material. Made of a single layer of carbon atoms in a honeycomb arrangement, graphene is stronger pound-for-pound than steel and conducts electricity better than copper. Since the discovery of graphene, scientists have wondered if boron, carbon's neighbor on the periodic table, could also be arranged in single-atom sheets. Theoretical work suggested it was possible, but the atoms would need to be in a very particular arrangement.

Boron has one fewer electron than carbon and as a result can't form the honeycomb lattice that makes up graphene. For boron to form a single-atom layer, theorists suggested that the atoms must be arranged in a triangular lattice with hexagonal vacancies — holes — in the lattice.

"That was the prediction," said Lai-Sheng Wang, professor of chemistry at Brown, "but nobody had made anything to show that's the case."

Wang and his research group, which has studied boron chemistry for many years, have now produced the first experimental evidence that such a structure is possible. In a paper published on January 20 in Nature Communications, Wang and his team showed that a cluster made of 36 boron atoms (B36) forms a symmetrical, one-atom thick disc with a perfect hexagonal hole in the middle.

"It's beautiful," Wang said. "It has exact hexagonal symmetry with the hexagonal hole we were looking for. The hole is of real significance here. It suggests that this theoretical calculation about a boron planar structure might be right."

It may be possible, Wang said, to use B36 basis to form an extended planar boron sheet. In other words, B36 may well be the embryo of a new nanomaterial that Wang and his team have dubbed "borophene."

"We still only have one unit," Wang said. "We haven't made borophene yet, but this work suggests that this structure is more than just a calculation."

The work required a combination of laboratory experiments and computational modeling. In the lab, Wang and his student, Wei-Li Li, probe the properties of boron clusters using a technique called photoelectron spectroscopy. They start by zapping chunks of bulk boron with a laser to create vapor of boron atoms. A jet of helium then freezes the vapor into tiny clusters of atoms. Those clusters are then zapped with a second laser, which knocks an electron out of the cluster and sends it flying down a long tube that Wang calls his "electron racetrack." The speed at which the electron flies down the racetrack is used to determine the cluster's electron binding energy spectrum — a readout of how tightly the cluster holds its electrons. That spectrum serves as fingerprint of the cluster's structure.

Wang's experiments showed that the B36 cluster was something special. It had an extremely low electron binding energy compared to other boron clusters. The shape of the cluster's binding spectrum also suggested that it was a symmetrical structure.

To find out exactly what that structure might look like, Wang turned to Zachary Piazza, one of his graduate students specializing in computational chemistry. Piazza began modeling potential structures for B36 on a supercomputer, investigating more than 3,000 possible arrangements of those 36 atoms. Among the arrangements that would be stable was the planar disc with the hexagonal hole.

"As soon as I saw that hexagonal hole," Wang said, "I told Zach, 'We have to investigate that.'"

To ensure that they have truly found the most stable arrangement of the 36 boron atoms, they enlisted the help of Jun Li, who is a professor of chemistry at Tsinghua University in Beijing and a former senior research scientist at Pacific Northwest National Laboratory (PNNL) in Richland, Wash. Li, a longtime collaborator of Wang's, has developed a new method of finding stable structures of clusters, which would be suitable for the job at hand. Piazza spent the summer of 2013 at PNNL working with Li and his students on the B36 project. They used the supercomputer at PNNL to examine more possible arrangements of the 36 boron atoms and compute their electron binding spectra. They found that the planar disc with a hexagonal hole matched very closely with the spectrum measured in the lab experiments, indicating that the structure Piazza found initially on the computer was indeed the structure of B36.

That structure also fits the theoretical requirements for making borophene, which is an extremely interesting prospect, Wang said. The boron-boron bond is very strong, nearly as strong as the carbon-carbon bond. So borophene should be very strong. Its electrical properties may be even more interesting. Borophene is predicted to be fully metallic, whereas graphene is a semi-metal. That means borophene might end up being a better conductor than graphene.

"That is," Wang cautions, "if anyone can make it."

In light of this work, that prospect seems much more likely.



INFORMATION:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.



ELSE PRESS RELEASES FROM THIS DATE:

Drug to reverse breast cancer spread in development

2014-01-27
Researchers at Cardiff University are developing a novel compound known to reverse the spread of malignant breast cancer ...

Blue eyes and dark skin, that's how the European hunter-gatherer looked

2014-01-27
La Braña 1, name used to baptize a 7,000 years ...

Engineers teach old chemical new tricks to make cleaner fuels, fertilizers

2014-01-27
University researchers from two continents ...

Sensitivity of carbon cycle to tropical temperature variations has doubled, research shows

2014-01-27
The tropical carbon cycle has become ...

Cleveland Clinic researchers discover process that turns 'good cholesterol' bad

2014-01-27
Cleveland: Cleveland Clinic researchers have discovered the process by ...

Shortening guide RNA markedly improves specificity of CRISPR-Cas nucleases

2014-01-27
A simple adjustment to a powerful gene-editing tool may be able to improve its specificity. In a report receiving advance online publication in Nature Biotechnology, Massachusetts ...

How does the brain create sequences?

2014-01-27
When you learn how to play the piano, first you have to learn notes, scales and chords and only then will you be able to play a piece of music. The same ...

Long-lived breast stem cells could retain cancer legacy

2014-01-27
Researchers from Melbourne's Walter and Eliza Hall Institute have discovered that breast stem cells and their 'daughters' have a much longer lifespan than previously thought, and are active in puberty ...

Music therapy's positive effects on young cancer patients' coping skills, social integration

2014-01-27
A new study has found that adolescents and young adults undergoing cancer treatment gain coping skills and resilience-related outcomes when they participate in a therapeutic music ...

Quality improvement initiative improves asthma outcomes in teens

2014-01-27
Researchers at Cincinnati Children's Hospital Medical Center have successfully carried out what is believed to be the first initiative conducted exclusively among teenagers to show ...

LAST 30 PRESS RELEASES:

Making lighter work of calculating fluid and heat flow

Normalizing blood sugar can halve heart attack risk

Lowering blood sugar cuts heart attack risk in people with prediabetes

Study links genetic variants to risk of blinding eye disease in premature infants

Non-opioid ‘pain sponge’ therapy halts cartilage degeneration and relieves chronic pain

AI can pick up cultural values by mimicking how kids learn

China’s ecological redlines offer fast track to 30 x 30 global conservation goal

Invisible indoor threats: emerging household contaminants and their growing risks to human health

Adding antibody treatment to chemo boosts outcomes for children with rare cancer

Germline pathogenic variants among women without a history of breast cancer

Tanning beds triple melanoma risk, potentially causing broad DNA damage

Unique bond identified as key to viral infection speed

Indoor tanning makes youthful skin much older on a genetic level

Mouse model sheds new light on the causes and potential solutions to human GI problems linked to muscular dystrophy

The Journal of Nuclear Medicine ahead-of-print tip sheet: December 12, 2025

Smarter tools for peering into the microscopic world

Applications open for funding to conduct research in the Kinsey Institute archives

Global measure underestimates the severity of food insecurity

Child survivors of critical illness are missing out on timely follow up care

Risk-based vs annual breast cancer screening / the WISDOM randomized clinical trial

University of Toronto launches Electric Vehicle Innovation Ontario to accelerate advanced EV technologies and build Canada’s innovation advantage

Early relapse predicts poor outcomes in aggressive blood cancer

American College of Lifestyle Medicine applauds two CMS models aligned with lifestyle medicine practice and reimbursement

Clinical trial finds cannabis use not a barrier to quitting nicotine vaping

Supplemental nutrition assistance program policies and food insecurity

Switching immune cells to “night mode” could limit damage after a heart attack, study suggests

URI-based Global RIghts Project report spotlights continued troubling trends in worldwide inhumane treatment

Neutrophils are less aggressive at night, explaining why nighttime heart attacks cause less damage than daytime events

Menopausal hormone therapy may not pose breast cancer risk for women with BRCA mutations

Mobile health tool may improve quality of life for adolescent and young adult breast cancer survivors

[Press-News.org] Graphene-like material made of boron a possibility, experiments suggest