PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Rice lab clocks 'hot' electrons

Researchers time plasmon-generated electrons moving from nanorods to graphene

2014-01-31
(Press-News.org) Contact information: David Ruth
david@rice.edu
713-348-6327
Rice University
Rice lab clocks 'hot' electrons Researchers time plasmon-generated electrons moving from nanorods to graphene

HOUSTON – (Jan. 30, 2014) – Plasmonic nanoparticles developed at Rice University are becoming known for their ability to turn light into heat, but how to use them to generate electricity is not nearly as well understood.

Scientists at Rice are working on that, too. They suggest that the extraction of electrons generated by surface plasmons in metal nanoparticles may be optimized.

Rice researchers led by chemist Stephan Link and graduate student Anneli Hoggard are endeavoring to understand the physics; they started by measuring the speed and efficiency of excited "hot" electrons drawn from gold nanoparticles into a sheet of graphene.

It's a good thing for scientists and engineers to know as they work on technologies beyond standard photovoltaic devices that gobble light to drive chemical reactions or next-generation electronics. The work was reported recently in the American Chemical Society journal ACS Nano.

"We've looked at this process on a single-particle level," said lead author Hoggard. "Instead of looking at a device that has many junctions, we've looked at one particle at a time. We had to measure a lot of particles to get good statistics."

Dark-field scattering and photoluminescence spectroscopy of more than 200 nanoparticles helped them determine that it takes about 160 femtoseconds (quadrillionths of a second) for an electron to transfer from the particle to highly conducting graphene, the single-atom-thick form of carbon.

Plasmons are the collective excitation of free electrons in metals that, when stimulated by an energy source like sunlight or a laser, set up a harmonic oscillation of the surface charges similar to waves. In the process, they scatter light that can be read by a spectrometer, which captures and categorizes light according to its wavelengths.

If the energy input is intense enough, the output can be intense as well. In one practical example demonstrated at Rice, plasmon excitation in gold nanoparticles produces heat that instantly turns even ice-cold water into steam.

That excitation energy can also be channeled in other directions through the creation of hot electrons that can transfer to suitable acceptors, Link said, but how fast usable electrons flow from plasmonic nanoparticles is little understood. "The plasmon generates hot electrons that decay very quickly, so intercepting them is a challenge," he said. "We're now realizing these electrons can be useful."

That thought prompted Link's lab to embark upon the painstaking effort to analyze single nanoparticles. The researchers placed gold nanorods on beds of both inert quartz and highly conductive graphene and used a spectrometer to view the line width of the plasmon-scattering spectrum.

The homogeneous line width obtained via single-particle spectroscopy is a measure of the range of wavelengths that resonantly excite a surface plasmon. It's also a measure of the plasmon lifetime. Broad line widths correspond to short lifetimes and narrow line widths to long lifetimes.

The Rice researchers found graphene broadened the nanorods' surface plasmon response – and shortened its lifetime – by accepting hot electrons. By acting as an electron acceptor, the graphene accelerated damping of the plasmons. The difference in damping between the quartz and graphene samples provided a means to calculate the electrons' transfer time.

"The plasmon resonance is determined by the size and the shape of the nanoparticle," Hoggard said. "And it usually appears as a single peak for gold nanorods. But there are important parameters about the peak: The position and the width of the peak can give us information about the particle itself, or the type of environment it's in. So we looked at how the width of the peak changes when nanoparticles are introduced into an electron-accepting environment, which in this case is graphene."

The Rice lab hopes to optimize the connection between the nanoparticles and graphene or another substrate, preferentially a semiconductor that will allow them to trap hot electrons.

"But this experiment wasn't about making a specific device," Link said. "It was about measuring the transfer step. Of course, now we're thinking about designing systems to separate the charge longer, as the electrons transferred quickly back to the gold nanorods. We want to put these hot electrons to work for devices like photodetectors or as catalysts where these electrons can do chemistry.

"It would be fascinating if we could use this process as a source of hot electrons for catalysis and also as an analytical tool for observing such plasmon-enabled reactions. That's the big picture."



INFORMATION:

The paper's co-authors are Rice graduate students Lin-Yung Wang, Lulu Ma and Jana Olson; former postdoctoral researchers Ying Fang and Zheng Liu; senior Ge You; research scientist Wei-Shun Chang and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry and chair of Rice's Department of Materials Science and NanoEngineering. Link is an associate professor of chemistry and of electrical and computer engineering.

The Robert A. Welch Foundation, the National Science Foundation, the Army Research Office and the American Chemical Society Petroleum Research Fund supported the research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nn404985h

This news release can be found online at http://news.rice.edu/2014/01/30/rice-lab-clocks-hot-electrons/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Link Research Group: http://slink.rice.edu

Ajayan Research Group: http://ajayan.rice.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2014/01/0203_ELECTRON-1-web.jpg

The plasmon resonance of gold nanorods on graphene is broadened compared with gold nanorods on quartz, according to a new study by Rice University scientists. The additional peak width was attributed to excited electron transfer between gold nanorods and graphene. (Credit: Anneli Hoggard/Rice University)

http://news.rice.edu/wp-content/uploads/2014/01/0203_ELECTRON-2-web.jpg

Rice University researchers determined the amount of time it takes electrons generated by plasmons in a gold nanorod to transfer to a sheet of graphene through spectroscopic analysis of hundreds of particles. The research will help scientists strategize on ways to gather and store electrons from plasmonic particles. (Credit: Anneli Hoggard/Rice University)

http://news.rice.edu/wp-content/uploads/2014/01/0203_ELECTRON-3-web.jpg

Rice University researchers have successfully measured the time it takes electrons generated by plasmons to move from a gold nanorod to graphene. From left, Rice chemist Stephan Link and graduate students Lin-Yung Wang and Anneli Hoggard. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu



ELSE PRESS RELEASES FROM THIS DATE:

Forests in Central America paying the price of drug trafficking shift

2014-01-31
A group of researchers focused on sustainable practices, geography and earth sciences found something unexpected during their work in Central America: the effects of drug trafficking ...

What your company can learn from NASA tragedies

2014-01-31
BYU business professor Peter Madsen has been researching NASA's safety climate ever since the Columbia shuttle broke apart upon re-entering Earth's ...

USF psychologist: Childhood depression may increase risk of heart disease by teen years

2014-01-31
TAMPA, Fla. – Children with depression are more likely to be obese, ...

RI Hospital researchers identify components in C. diff that may lead to better treatment

2014-01-31
PROVIDENCE, R.I. – Rhode Island Hospital researchers have identified components in Clostridium ...

Researchers create database to examine vast resources of health legacy foundations

2014-01-31
CHARLOTTE, N.C. – Jan. 30, 2014 - Local communities can expect the number and asset size of philanthropic foundations to increase, due to the rise in health ...

A detailed look at HIV in action

2014-01-31
The human intestinal tract, or gut, is best known for its role in digestion. But this collection of organs also plays a prominent ...

Third-hand smoke shown to cause health problems

2014-01-31
RIVERSIDE, Calif. — Do not smoke and do not allow yourself to be exposed ...

New study finds differences in concussion risk between football helmets

2014-01-31
Football helmets can be designed to reduce the risk of concussions, according to a new study by some of the nation's leading concussion researchers published today in the Journal of Neurosurgery. The study ...

Secrets of potato blight evolution could help farmers fight back

2014-01-31
Scientists ...

Lemur lovers sync their scents

2014-01-31
DURHAM, N.C. -- The strength of a lemur couple's bond is reflected by the similarity of their scents, finds a new study. "It's like singing a duet, but with ...

LAST 30 PRESS RELEASES:

Does drinking alcohol really take away the blues? It's not what you think

Speed of risk perception is connected to how information is arranged

High-risk pregnancy specialists analyze AI system to detect heart defects on fetal ultrasound exams

‘Altar tent’ discovery puts Islamic art at the heart of medieval Christianity

Policy briefs present approach for understanding prison violence

Early adult mortality is higher than expected in US post-COVID

Recycling lithium-ion batteries cuts emissions and strengthens supply chain

Study offers new hope for relieving chronic pain in dialysis patients

How does the atmosphere affect ocean weather?

Robots get smarter to work in sewers

Speech Accessibility Project data leads to recognition improvements on Microsoft Azure

Tigers in the neighborhood: How India makes room for both tigers and people

Grove School’s Arthur Paul Pedersen publishes critical essay on scientific measurement literacy

Moffitt study finds key biomarker to predict KRASG12C inhibitor effectiveness in lung cancer

Improving blood transfusion monitoring in critical care patients: Insights from diffuse optics

Powerful legal and financial services enable kleptocracy, research shows

Carbon capture from constructed wetlands declines as they age

UCLA-led study establishes link between early side effects from prostate cancer radiation and long-term side effects

Life cycles of some insects adapt well to a changing climate. Others, not so much.

With generative AI, MIT chemists quickly calculate 3D genomic structures

The gut-brain connection in Alzheimer’s unveiled with X-rays

NIH-funded clinical trial will evaluate new dengue therapeutic

Sound is a primary issue in the lives of skateboarders, study shows

Watch what you eat: NFL game advertisements promote foods high in fat, sodium

Red Dress Collection Concert hosted by Sharon Stone kicks off American Heart Month

One of the largest studies on preterm birth finds a maternal biomarker test significantly reduces neonatal morbidities and improves neonatal outcomes

One of the largest studies of its kind finds early intervention with iron delivered intravenously during pregnancy is a safe and effective treatment for anemia

New Case Western Reserve University study identifies key protein’s role in psoriasis

First-ever ethics checklist for portable MRI brain researchers

Addressing 3D effects of clouds for significant improvements of climate models

[Press-News.org] Rice lab clocks 'hot' electrons
Researchers time plasmon-generated electrons moving from nanorods to graphene