(Press-News.org) Contact information: Tom Abate
tabate@stanford.edu
650-736-2245
Stanford School of Engineering
Stanford researchers discover how brain regions work together, or alone
Our brains have billions of neurons grouped into different regions. These regions often work alone, but sometimes must join forces. How do regions communicate selectively?
Stanford researchers may have solved a riddle about the inner workings of the brain, which consists of billions of neurons, organized into many different regions, with each region primarily responsible for different tasks.
The various regions of the brain often work independently, relying on the neurons inside that region to do their work. At other times, however, two regions must cooperate to accomplish the task at hand.
The riddle is this: what mechanism allows two brain regions to communicate when they need to cooperate yet avoid interfering with one another when they must work alone?
In a paper published today in Nature Neuroscience, a team led by Stanford electrical engineering professor Krishna Shenoy reveals a previously unknown process that helps two brain regions cooperate when joint action is required to perform a task.
"This is among the first mechanisms reported in the literature for letting brain areas process information continuously but only communicate what they need to," said Matthew T. Kaufman, who was a postdoctoral scholar in the Shenoy lab when he co-authored the paper.
Kaufman initially designed his experiments to study how preparation helps the brain make fast and accurate movements – something that is central to the Shenoy lab's efforts to build prosthetic devices controlled by the brain.
But the Stanford researchers used a new approach to examine their data that yielded some findings that were broader than arm movements.
The Shenoy lab has been a pioneer in analyzing how large numbers of neurons function as a unit. As they applied these new techniques to study arm movements, the researchers discovered a way that different regions of the brain keep results localized or broadcast signals to recruit other regions as needed.
"Our neurons are always firing, and they're always connected," explained Kaufman, who is now pursuing brain research at Cold Spring Harbor Laboratory in New York. "So it's important to control what signals are communicated from one area to the next."
Experimental design
The scientists derived their findings by studying monkeys that had been trained to make precise arm movements. The monkeys were taught to pause briefly before making the reach, thus letting their brain prepare for a moment before moving.
Remember, the goal was to help build brain-controlled prostheses. Because the neurons in the brain always send out signals, engineers must be able to differentiate the command to act from the signals that accompany preparation.
To understand how this worked with the monkey's arm, the scientists took electrical readings at three places during the experiments: from the arm muscles, and from each of two motor cortical regions in the brain known to control arm movements.
The muscle readings enabled the scientists to ascertain what sorts of signals the arm receives during the preparatory state compared with the action step.
The brain readings were more complex.
Two regions control arm movements. They are located near the top center of the brain, an inch to the side.
Each of the two regions is made up of more than 20 million neurons. The scientists wanted to understand the behavior of both regions, but they couldn't probe millions of neurons. So they took readings from carefully chosen samples of about 100 to 200 individual neurons in each of the two regions.
During experiments the scientists examined the monkeys' brain readings at two levels.
On one level, they considered the activity of individual neurons – how quickly or slowly the neurons fired signals.
At a higher level, the scientists also identified patterns of changes in the activity of many neurons. This is a relatively new technique for neuroscience, called a population and dimensionality analysis. Its goal is to understand how neurons work together in entire regions of the brain.
Hunting for the signal
The key findings emerged from understanding how individual neurons worked together as a population to drive the muscles.
As the monkey prepared for movement but held its arm still, many neurons in both of the motion-control regions registered big changes in activity.
But this preparatory activity did not drive the movement. Why?
The scientists realized that, during the preparatory stage, the brain carefully balanced the activity changes of all those individual neurons inside each region. While some neurons fired faster, others slowed down so that the entire population broadcast a constant message to the muscles.
But at the moment of action, the population readings changed in a measurable and consistent way.
By looking at the data, the scientists could correlate these changes at the population level to the flexing of the muscles. This change at the population level differentiated action from preparation.
Broader ramifications
The Stanford researchers put great effort into the mathematical analysis of their data. They had to be sure that each of the two populations of neurons exhibited the key muscle-controlling changes in activity when (and only when) the muscles flexed. This was the signal they had set out to find.
Kaufman said he was about one year into what turned out to be a three-year project when he realized there might be broader ramifications to this population-level and dimensionality identification idea.
He was presenting an early version of the brain-to-muscle results at a scientific conference when a question from one his peers caused him to think. He had found population-level signals between the brain regions and the muscles. Did the two brain regions, each partially in control of the action, couple and uncouple with each other in a similar way?
"I started the analysis in my hotel room that night at one a.m.," Kaufman recalled. "Soon enough, the results were clear."
"The serendipitous interplay between basic science and engineering never ceases to amaze me," said Professor Shenoy, who is also professor of neurobiology (by courtesy) and bioengineering (affiliate), and a Bio-X faculty member. "Some of the best ideas for the design of prosthetic systems to help people with paralysis come from basic neuroscience research, as is the case here, and some of the deepest scientific insights come from engineering measurement and medical systems."
INFORMATION:
Also contributing to this paper were former postdocs Mark M. Churchland, now a professor of neuroscience at Columbia University and co-director of the Grossman Center for the Statistics of the Mind, and Dr. Stephen I. Ryu, now a consulting associate professor of electrical engineering at Stanford and a neurosurgeon at the Palo Alto Medical Foundation.
Principal funding for the work came from the National Science Foundation, the Defense Advanced Research Projects Agency, the National Institutes of Health (NIH) and the NIH Director's Pioneer Award.
Stanford researchers discover how brain regions work together, or alone
Our brains have billions of neurons grouped into different regions. These regions often work alone, but sometimes must join forces. How do regions communicate selectively?
2014-02-03
ELSE PRESS RELEASES FROM THIS DATE:
Split decision: Stem cell signal linked with cancer growth
2014-02-03
Researchers at the University of California, San Diego School of Medicine have identified a protein critical to hematopoietic stem cell function and blood formation. The finding has potential ...
Making your brain social
2014-02-03
In many people with autism and other neurodevelopmental disorders, different parts of the brain don't talk to each other very well. Scientists have now identified, ...
Transcendental Meditation reduces teacher stress and burnout, new research shows
2014-02-03
A new study published in The Permanente Journal (Vol. 18, No.1) on ...
Positive feelings about race, ethnicity tied to stronger development in minority youth
2014-02-03
The more positively minority youth feel about their ethnicity or race, the fewer symptoms of depression and emotional and behavior problems they have. That's the ...
For young African-Americans, emotional support buffers the biological toll of racial discrimination
2014-02-03
African American youth who report experiencing frequent discrimination during adolescence are at risk for developing heart disease, high blood pressure, ...
'I know it but I won't say it'
2014-02-03
Previous research has suggested that shy children have difficulties with language. Now, a new longitudinal study paints a more nuanced picture. ...
Hardships explain much of hospital asthma readmissions among black children and teens
2014-02-03
Black children are twice as likely as white children to be readmitted to the hospital for asthma – a disparity due in large part to a greater burden of financial ...
Beliefs about HPV vaccine do not lead to initiation of sex or risky sexual behavior
2014-02-03
A new study may alleviate concerns that the human papillomavirus (HPV) vaccine leads to either the initiation ...
Clinical education initiatives increase clinical effectiveness of imaging examinations
2014-02-03
The February issue of the Journal of the American College of Radiology (JACR®) focuses on a variety of issues relating to clinical practice, practice management, health services ...
Liver tumors found in mice exposed to BPA
2014-02-03
ANN ARBOR—In one of the first studies to show a significant association between BPA and cancer development, University of Michigan School of Public Health researchers have found liver tumors in mice exposed to the chemical ...
LAST 30 PRESS RELEASES:
Chimpanzees use medicinal leaves to perform first aid
New marine-biodegradable polymer decomposes by 92% in one year, rivals nylon in strength
Manitoba Museum and ROM palaeontologists discover 506-million-year-old predator
Not all orangutan mothers raise their infants the same way
CT scanning helps reveal path from rotten fish to fossil
Physical activity + organized sports participation may ward off childhood mental ill health
Long working hours may alter brain structure, preliminary findings suggest
Lower taxes on Heated Tobacco Products are subsidizing tobacco industry – new research
Recognition from colleagues helps employees cope with bad work experiences
First-in-human study of once-daily oral treatment for obesity that mimics metabolic effects of gastric bypass without surgery
Rural preschoolers more likely to be living with overweight and abdominal obesity, and spend more time on screens, than their urban counterparts
Half of popular TikToks about “food noise” mention medications, mainly weight-loss drugs, to manage intrusive thoughts about food
Global survey reveals high disconnect between perceptions of obesity among people living with the disease and their doctors
Study reveals distinct mechanisms of action of tirzepatide and semaglutide
Mount Sinai Health System to honor Dennis S. Charney, MD, Dean of the Icahn School of Medicine at Mount Sinai, for 18 years of leadership and service at annual Crystal Party
Mapping a new brain network for naming
Healthcare company Watkins-Conti announces publication of positive clinical trial results for FDA-cleared Yōni.Fit bladder support
Prominent chatbots routinely exaggerate science findings, study shows
First-ever long read datasets added to two Kids First studies
Dual-laser technique lowers Brillouin sensing frequency to 200 MHz
Zhaoqi Yan named a 2025 Warren Alpert Distinguished Scholar
Editorial for the special issue on subwavelength optics
Oyster fossils shatter myth of weak seasonality in greenhouse climate
Researchers demonstrate 3-D printing technology to improve comfort, durability of ‘smart wearables’
USPSTF recommendation on screening for syphilis infection during pregnancy
Butterflies hover differently from other flying organisms, thanks to body pitch
New approach to treating aggressive breast cancers shows significant improvement in survival
African genetic ancestry, structural and social determinants of health, and mortality in Black adults
Stigmatizing and positive language in birth clinical notes associated with race and ethnicity
Analysis of the disease spectrum characteristics of inherited metabolic liver diseases in two hepatology specialist hospitals in Beijing over the past 20 years
[Press-News.org] Stanford researchers discover how brain regions work together, or aloneOur brains have billions of neurons grouped into different regions. These regions often work alone, but sometimes must join forces. How do regions communicate selectively?