PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Two papers unraveled the mystery of sex determination and benthic adaptation of the flatfish

2014-02-03
(Press-News.org) Contact information: Jia Liu
liujia@genomics.cn
BGI Shenzhen
Two papers unraveled the mystery of sex determination and benthic adaptation of the flatfish February 2, 2014, Shenzhen, China - Researchers from Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, BGI-Shenzhen and other institutes have successfully decoded the first genome of a flatfish - half-smooth tongue sole (Cynoglossus semilaevis), providing insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. The data generated in this project also lay foundation on the genetic breeding of tongue sole. The latest study has been published online today in Nature Genetics. In another study published in Genome Research at the same time, the researchers also uncovered the epigenetic mechanism underlying the temperature-dependent sexual reversal as well as the trans-generational inheritance of such sexual reversal phenomena in tongue sole.

The genetic mechanisms underlying sex determination as well as the origin and evolution of sex chromosomes have fascinated biologists for decades. Half-smooth tongue sole is an important cultured marine flatfish along China coast, whose sex is primarily determined by the inheritance of sex chromosomes (genetic sex determination, GSD) but also affected by environmental temperature (environmental sex determination, ESD). In normal condition, the sex of tongue sole is determined by the ZW/ZZ sex determination system with female containing a heteromorphic W chromosome. However, if juvenile fish are reared in high temperature, the genetic females (ZW) can develop into phenotypic males (so-called pseudo-males). Interestingly, these sex-reversed pseudo-males are fertile and can mate with normal females to produce viable offspring. Astonishingly, most of their genetic female offspring (ZW) develop into pseudo-males, but without temperature induction. Thus, with its complex sex determination system governed by the interaction between genetic determination and environmental factors, tongue sole is an excellent model to understand the molecular mechanism of sex determination in fishes and the interplay of genome and environment.

In this study, the researchers sequenced and assembled the genomes of one male (ZZ) and one female (ZW) tongue sole, respectively. Based on the difference of sequencing depth of Z/W linked-scaffolds between female and male, together with the high-resolution genetic map constructed by SSR and SNP, they assembled the Z and W chromosome of tongue sole at high quality. Using the Z-W homologous genes, they estimated that the age of the tongue sole sex chromosome pair is relatively young (about 30 million years), which contrasts with the age of hundreds of millions of years for the mammalian and avian sex chromosomes. Interestingly, researchers found that the sex chromosomes of tongue sole are derived from the same ancestral vertebrate protochromosome as the avian W and Z chromosomes. Furthermore, the same gene on the Z chromosome, dmrt1, which is the male-determining gene in birds, showed convergent evolution of features that are compatible with a similar function in tongue sole.

To understanding the regulatory mechanisms involved in the temperature-dependent sex reversal as well as the inheritance of sex reversal in tongue sole, researchers then analyzed the gonadal DNA methylomes and transcriptomes of normal males (ZZ), pseudo-males (ZW), normal females (ZW), and the offspring of a pseudo-male crossed with a female. They found that, after phenotypic sexual reversal, the genome-wide methylation patterns of genetic females have been accurately shaped to the patterns of normal males. Furthermore, the methylation changes after sex reversal were enriched in genes in the sex determination pathway. By comparing parental and offspring samples, researchers also found that the methylation changes between parental pseudo-males and females were inherited by offspring pseudo-males, probably explaining why the offspring genetic females of pseudo-males can undergo sexual reversal without temperature induction. For organisms with sex chromosomes, a challenge for the sex-reversed individuals is the unequal gene dosage on sex chromosomes when compared with normal individuals. For example, pseudo-males (ZW) of tongue sole lack one Z chromosome compared with normal males (ZZ), and contain one extra W chromosome with female-specific genes. Thus, how to revolve gene dosage inequality on sex chromosomes is a fundamental question for sex reversal. Researchers found that, dosage compensation only occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudo-male testes, achieving equal expression level in normal male testes. Some spermatogenesis-related genes were found in this region. For the W chromosome, they observed that many W-linked genes are still actively expressed in pseudo-males. The researchers speculate that the expression of these W-linked genes may compensate the dosage of their counterparts on the Z chromosomes. However, female-specific genes, such as figla, were suppressed in pseudo-males by methylation regulation. In conclusion, the researchers propose that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish.

Flatfish are characterized by a transition from pelagic to benthic habitats when they metamorphose from free swimming larvae to bottom-dwelling fish, accompanied by a series of biological and phenotypic changes, such as eye migration, displacement of internal organs, the difference of pigmentation and the sensitivity of light. By comparing the transcriptomes of pelagic and benthic fish, the researchers revealed that the differentially expressed genes between these two developmental stages are enriched in genes potentially involved in adaptation to a benthic lifestyle. They also identified 15 positively selected genes, which have putative roles in metamorphosis. In addition, they found that the expression levels of rod pigment (rh1) and cone pigment (lws1) genes, which are responsible for scotopic vision and long-wavelength-sensitivity, respectively, were significantly up-regulated in benthic stages, whereas the expression of the middle-wavelength-sensitive pigment gene (rh2) was significantly up-regulated in pelagic stages. Moreover, they also found that several crystallin genes were lost or became pseudogenes. They speculate that these changes reveal the adaptation of the tongue sole visual system after shifting to the benthic environment with weak light conditions. As compensation, tongue sole have developed a strong lateral –line sense organ and especially, the papillae-a specific mechanoreceptorsense organ during evolution.

Dr. Guojie Zhang, who is the leading author of both papers from China National Genebank of BGI, said: "The evolution of sex is one of the major transitions in evolution, that has significantly enhanced the adaptation ability of the species. However, our knowledge of sex determination mechanisms is still very limited. Vertebrates have various sex-determination mechanisms. The sex determination process of many vertebrate species is regulated by environmental cues, like temperature. Investigation of the molecular mechanisms underlying this process will shed new lights on the understanding of the interaction between functional gene networks and their regulations by environmental factors, and increase our knowledge on how genome evolution drives species diversification and diversity."

### About BGI BGI was founded in 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, which includes both private non-profit genomic research institutes and sequencing application commercial units, and its affiliates, BGI Americas and BGI Europehave established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications. BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 250 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, have sequenced the human Gut metagenome, and a significant proportion of the genomes for 1,000 genomes. For more information about BGI please visit http://www.genomics.cn. Contact Information: BGI
Bicheng Yang,
Public Communication Officer
+86-755-82639701
yangbicheng@genomics.cn
http://www.genomics.cn


ELSE PRESS RELEASES FROM THIS DATE:

Capturing ultrasharp images of multiple cell components at once

2014-02-03
BOSTON -- A new microscopy method could ...

Nature can, selectively, buffer human-caused global warming

2014-02-03
Jerusalem, February 2, 2014 – Can naturally occurring processes selectively buffer the full brunt of global warming caused by greenhouse gas emissions resulting ...

JCI early table of contents for Feb. 3, 2014

2014-02-03
Methylation signature correlates with acute myeloid leukemia survival Acute myeloid leukemia (AML) is characterized by the inappropriate replacement of normal bone marrow with white blood cells due to dysfunctional ...

Can a protein controlling blood pressure enhance immune responses and prevent Alzheimer's?

2014-02-03
LOS ANGELES (EMBARGOED UNTIL 12 ...

NSAIDs do not increase risk of miscarriages: Study

2014-02-03
Women who take nonsteroidal anti-inflammatory drugs (NSAIDs) during pregnancy are not at increased risk of miscarriages, confirms a new study published in CMAJ (Canadian Medical Association ...

New guideline recommends delaying dialysis for chronic kidney disease

2014-02-03
For asymptomatic adults with chronic kidney disease who will need dialysis, an intent-to-defer approach is recommended over an ...

Chemical stem cell signature predicts treatment response for acute myeloid leukemia

2014-02-03
February 3, 2014 — (Bronx, NY) — Researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center have found a chemical "signature" ...

Study finds intervention leads to reduction of C-sections and neonatal morbidities

2014-02-03
In a study to be presented on Feb. 6 in an oral plenary session at 8 a.m. CST, at the Society for Maternal-Fetal Medicine's annual meeting, The Pregnancy Meeting™, in ...

Study's results encourage expectant monitoring for women with hypertension

2014-02-03
In a study to be presented on Feb. 6 at 8:15 a.m. CST, at the Society for Maternal-Fetal ...

Study finds NIPT detects more than 80 percent of chromosomal abnormalities

2014-02-03
In a study to be presented on Feb. 6 at 9 a.m. CST, at the Society for Maternal-Fetal ...

LAST 30 PRESS RELEASES:

Kennesaw State assistant professor receives grant to improve shelf life of peptide- and protein-based drugs

Current heart attack screening tools are not optimal and fail to identify half the people who are at risk

LJI scientists discover how T cells transform to defend our organs

Brain circuit controlling compulsive behavior mapped

Atoms passing through walls: Quantum tunneling of hydrogen within palladium crystal

Observing quantum footballs blown up by laser kicks

Immune cells ‘caught in the act’ could spur earlier detection and prevention of Type 1 Diabetes

New membrane sets record for separating hydrogen from CO2

Recharging the powerhouse of the cell

University of Minnesota research finds reducing inflammation may protect against early AMD-like vision loss

A mulching film that protects plants without pesticides or plastics

New study highlights key findings on lung cancer surveillance rates

Uniform reference system for lightweight construction methods

Improve diet and increase physical activity at the same time to limit weight gain, study suggests

A surprising insight may put a charge into faster muscle injury repair

Scientists uncover how COVID-19 variants outsmart the immune system

Some children’s tantrums can be seen in the brain, new study finds

Development of 1-Wh-class stacked lithium-air cells

UVA, military researchers seek better ways to identify, treat blast-related brain injuries

AMS Science Preview: Railways and cyclones; pinned clouds; weather warnings in wartime

Scientists identify a molecular switch to a painful side effect of chemotherapy

When the air gets dry, cockroaches cuddle: Binghamton University study reveals survival strategy

Study finds unsustainable water use across the Rio Grande

UBCO engineers create new device to improve indoor air quality

Arginine supplementation curbs Alzheimer’s disease pathology in animal models

Stick and Glue! Researchers at IOCB Prague introduce a new biomolecule-labeling method for more precise observation of cellular processes

Brain “stars” hold the power to preserve cognitive function in model of Alzheimer’s disease

New CAR T strategy targets most common form of heart disease

Why some volcanoes don’t explode

New stem cell medium creates contracting canine heart muscle cells

[Press-News.org] Two papers unraveled the mystery of sex determination and benthic adaptation of the flatfish