PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Molecular traffic jam makes water move faster through nanochannels

Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times

2014-02-06
(Press-News.org) Contact information: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Molecular traffic jam makes water move faster through nanochannels Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast.

New research by Northwestern University researchers finds that water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results.

"Previous molecular dynamics simulations suggested that water molecules coursing through carbon nanotubes are evenly spaced and move in lockstep with one another," said Seth Lichter, professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science. "But our model shows that they actually move intermittently, enabling surprisingly high flow rates of 10 billion molecules per second or more."

The research is described in an Editor's Choice paper, "Solitons Transport Water through Narrow Carbon Nanotubes," published January 27 in the journal Physical Review Letters.

The findings could resolve a quandary that has baffled fluid dynamics experts for years. In 2005, researchers — working under the assumption that water molecules move through channels in a constant stream — made a surprising discovery: water in carbon nanotubes traveled 10,000 times faster than predicted.

The phenomenon was attributed to a supposed smoothness of the carbon nanotubes' surface, but further investigation uncovered the counterintuitive role of their inherently rough interior.

Lichter and post-doctoral researcher Thomas Sisan performed new simulations with greater time resolution, revealing localized variations in the distribution of water along the nanotube. The variations occur where the water molecules do not line up perfectly with the spacing between carbon atoms — creating regions in which the water molecules are unstable and so propagate exceedingly easily and rapidly through the nanotube.

Nanochannels are found in all of our cells, where they regulate fluid flow across cell membranes. They also have promising industrial applications for desalinating water. Using the newly discovered fluid dynamics principles could enable other applications such as chemical separations, carbon nanotube-powered batteries, and the fabrication of quantum dots, nanocrystals with potential applications in electronics.

### END


ELSE PRESS RELEASES FROM THIS DATE:

Critical factor (BRG1) identified for maintaining stem cell pluripotency

2014-02-06
New Rochelle, NY, February 6, 2014—The ability to reprogram adult cells so they return to an undifferentiated, pluripotent state—much like an embryonic stem cell—is ...

What's love got to do with it?

2014-02-06
Fairfax, Va. – Feb. 6, 2014 – A first-of-its-kind study by researchers at George Mason University's Department of Global and Community Health and Indiana University's Center for ...

Scientists use 'voting' and 'penalties' to overcome errors in quantum optimization

2014-02-06
Seeking a solution to decoherence—the ...

Ballistic transport in graphene suggests new type of electronic device

2014-02-06
Using electrons more like photons could provide the foundation for a new type of electronic device that would capitalize on the ability of graphene to carry electrons with almost no resistance ...

Amputee feels in real-time with bionic hand

2014-02-06
PUBLIC RELEASE DATE: 5-Feb-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Hillary Sanctuary hillary.sanctuary@epfl.ch 41-216-937-022 Ecole Polytechnique Fédérale de Lausanne Amputee feels in real-time with bionic hand Dennis Aabo Sorensen is the first amputee in the world to feel sensory rich information -- in real-­time -- with a prosthetic hand wired to nerves in his upper arm; Sorensen could grasp objects ...

Inducing climate-smart global supply networks: Nature Commentary

2014-02-06
In a Nature Commentary he proposes a community effort to collect economic data on the new website zeean.net. The aim is to better understand economic flows and to thereby ...

New approach prevents thrombosis without increasing the risk of bleeding

2014-02-06
In collaboration with an international team, researchers at Karolinska Institutet in Sweden have developed an antibody, 3F7, which blocks a protein that is active in the coagulation system factor ...

Some receive unnecessary prioritization for liver transplantation, says Penn Medicine study

2014-02-06
(PHILADELPHIA) – Patients waiting for liver transplants ...

New analysis of endometriosis could help diagnoses, treatments

2014-02-06
CAMBRIDGE, MA -- Endometriosis, the invasive displacement of uterine tissue into surrounding organs, affects at least 10 percent of women. The disease, which is often misdiagnosed, can cause ...

Female mice prefer unfamiliar male songs

2014-02-06
Female mice prefer songs of mice that are different from their parents when selecting a mate, according to a study published February 5, 2014 in PLOS ONE by Akari Asaba from the Azabu University, ...

LAST 30 PRESS RELEASES:

Molecular glue discovery: large scale instead of lucky strike

Insulin resistance predictor highlights cancer connection

Explaining next-generation solar cells

Slippery ions create a smoother path to blue energy

Magnetic resonance imaging opens the door to better treatments for underdiagnosed atypical Parkinsonisms

National poll finds gaps in community preparedness for teen cardiac emergencies

One strategy to block both drug-resistant bacteria and influenza: new broad-spectrum infection prevention approach validated

Survey: 3 in 4 skip physical therapy homework, stunting progress

College students who spend hours on social media are more likely to be lonely – national US study

Evidence behind intermittent fasting for weight loss fails to match hype

How AI tools like DeepSeek are transforming emotional and mental health care of Chinese youth

Study finds link between sugary drinks and anxiety in young people

Scientists show how to predict world’s deadly scorpion hotspots

ASU researchers to lead AAAS panel on water insecurity in the United States

ASU professor Anne Stone to present at AAAS Conference in Phoenix on ancient origins of modern disease

Proposals for exploring viruses and skin as the next experimental quantum frontiers share US$30,000 science award

ASU researchers showcase scalable tech solutions for older adults living alone with cognitive decline at AAAS 2026

Scientists identify smooth regional trends in fruit fly survival strategies

Antipathy toward snakes? Your parents likely talked you into that at an early age

Sylvester Cancer Tip Sheet for Feb. 2026

Online exposure to medical misinformation concentrated among older adults

Telehealth improves access to genetic services for adult survivors of childhood cancers

Outdated mortality benchmarks risk missing early signs of famine and delay recognizing mass starvation

Newly discovered bacterium converts carbon dioxide into chemicals using electricity

Flipping and reversing mini-proteins could improve disease treatment

Scientists reveal major hidden source of atmospheric nitrogen pollution in fragile lake basin

Biochar emerges as a powerful tool for soil carbon neutrality and climate mitigation

Tiny cell messengers show big promise for safer protein and gene delivery

AMS releases statement regarding the decision to rescind EPA’s 2009 Endangerment Finding

Parents’ alcohol and drug use influences their children’s consumption, research shows

[Press-News.org] Molecular traffic jam makes water move faster through nanochannels
Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times