PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Molecular traffic jam makes water move faster through nanochannels

Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times

2014-02-06
(Press-News.org) Contact information: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Molecular traffic jam makes water move faster through nanochannels Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast.

New research by Northwestern University researchers finds that water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results.

"Previous molecular dynamics simulations suggested that water molecules coursing through carbon nanotubes are evenly spaced and move in lockstep with one another," said Seth Lichter, professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science. "But our model shows that they actually move intermittently, enabling surprisingly high flow rates of 10 billion molecules per second or more."

The research is described in an Editor's Choice paper, "Solitons Transport Water through Narrow Carbon Nanotubes," published January 27 in the journal Physical Review Letters.

The findings could resolve a quandary that has baffled fluid dynamics experts for years. In 2005, researchers — working under the assumption that water molecules move through channels in a constant stream — made a surprising discovery: water in carbon nanotubes traveled 10,000 times faster than predicted.

The phenomenon was attributed to a supposed smoothness of the carbon nanotubes' surface, but further investigation uncovered the counterintuitive role of their inherently rough interior.

Lichter and post-doctoral researcher Thomas Sisan performed new simulations with greater time resolution, revealing localized variations in the distribution of water along the nanotube. The variations occur where the water molecules do not line up perfectly with the spacing between carbon atoms — creating regions in which the water molecules are unstable and so propagate exceedingly easily and rapidly through the nanotube.

Nanochannels are found in all of our cells, where they regulate fluid flow across cell membranes. They also have promising industrial applications for desalinating water. Using the newly discovered fluid dynamics principles could enable other applications such as chemical separations, carbon nanotube-powered batteries, and the fabrication of quantum dots, nanocrystals with potential applications in electronics.

### END


ELSE PRESS RELEASES FROM THIS DATE:

Critical factor (BRG1) identified for maintaining stem cell pluripotency

2014-02-06
New Rochelle, NY, February 6, 2014—The ability to reprogram adult cells so they return to an undifferentiated, pluripotent state—much like an embryonic stem cell—is ...

What's love got to do with it?

2014-02-06
Fairfax, Va. – Feb. 6, 2014 – A first-of-its-kind study by researchers at George Mason University's Department of Global and Community Health and Indiana University's Center for ...

Scientists use 'voting' and 'penalties' to overcome errors in quantum optimization

2014-02-06
Seeking a solution to decoherence—the ...

Ballistic transport in graphene suggests new type of electronic device

2014-02-06
Using electrons more like photons could provide the foundation for a new type of electronic device that would capitalize on the ability of graphene to carry electrons with almost no resistance ...

Amputee feels in real-time with bionic hand

2014-02-06
PUBLIC RELEASE DATE: 5-Feb-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Hillary Sanctuary hillary.sanctuary@epfl.ch 41-216-937-022 Ecole Polytechnique Fédérale de Lausanne Amputee feels in real-time with bionic hand Dennis Aabo Sorensen is the first amputee in the world to feel sensory rich information -- in real-­time -- with a prosthetic hand wired to nerves in his upper arm; Sorensen could grasp objects ...

Inducing climate-smart global supply networks: Nature Commentary

2014-02-06
In a Nature Commentary he proposes a community effort to collect economic data on the new website zeean.net. The aim is to better understand economic flows and to thereby ...

New approach prevents thrombosis without increasing the risk of bleeding

2014-02-06
In collaboration with an international team, researchers at Karolinska Institutet in Sweden have developed an antibody, 3F7, which blocks a protein that is active in the coagulation system factor ...

Some receive unnecessary prioritization for liver transplantation, says Penn Medicine study

2014-02-06
(PHILADELPHIA) – Patients waiting for liver transplants ...

New analysis of endometriosis could help diagnoses, treatments

2014-02-06
CAMBRIDGE, MA -- Endometriosis, the invasive displacement of uterine tissue into surrounding organs, affects at least 10 percent of women. The disease, which is often misdiagnosed, can cause ...

Female mice prefer unfamiliar male songs

2014-02-06
Female mice prefer songs of mice that are different from their parents when selecting a mate, according to a study published February 5, 2014 in PLOS ONE by Akari Asaba from the Azabu University, ...

LAST 30 PRESS RELEASES:

Air pollution linked to longer duration of long-COVID symptoms

Soccer heading damages brain regions affected in CTE

Autism and neural dynamic range: insights into slower, more detailed processing

AI can predict study results better than human experts

Brain stimulation effectiveness tied to learning ability, not age

Making a difference: Efficient water harvesting from air possible

World’s most common heart valve disease linked to insulin resistance in large national study

Study unravels another piece of the puzzle in how cancer cells may be targeted by the immune system

Long-sought structure of powerful anticancer natural product solved by integrated approach

World’s oldest lizard wins fossil fight

Simple secret to living a longer life

Same plant, different tactic: Habitat determines response to climate

Drinking plenty of water may actually be good for you

Men at high risk of cardiovascular disease face brain health decline 10 years earlier than women

Irregular sleep-wake cycle linked to heightened risk of major cardiovascular events

Depression can cause period pain, new study suggests

Wistar Institute scientists identify important factor in neural development

New imaging platform developed by Rice researchers revolutionizes 3D visualization of cellular structures

To catch financial rats, a better mousetrap

Mapping the world's climate danger zones

Emory heart team implants new blood-pumping device for first time in U.S.

Congenital heart defects caused by problems with placenta

Schlechter named Cancer Moonshot Scholar

Two-way water transfers can ensure reliability, save money for urban and agricultural users during drought in Western U.S., new study shows

New issue of advances in dental research explores the role of women in dental, clinical, and translational research

Team unlocks new insights on pulsar signals

Great apes visually track subject-object relationships like humans do

Recovery of testing for heart disease risk factors post-COVID remains patchy

Final data and undiscovered images from NASA’s NEOWISE

Nucleoporin93: A silent protector in vascular health

[Press-News.org] Molecular traffic jam makes water move faster through nanochannels
Researchers find the unusual movement of water molecules through carbon nanotubes explains their faster-than-expected travel times