(Press-News.org) Contact information: Mary Beth O'Leary
moleary@cell.com
617-397-2802
Cell Press
Pacific salmon inherit a magnetic sense of direction
Even young hatchery salmon with no prior experience of the world outside will orient themselves according to the Earth's magnetic field in the direction of the marine feeding grounds frequented by their ancestors. These findings, reported in Current Biology, a Cell Press publication, on February 6th, suggest that Chinook salmon inherit a kind of built-in GPS that always points them home.
"In essence, the fish act as though they have a map based on the magnetic field," says Nathan Putman of Oregon State University. "When the fish experience a magnetic field that is north or south of their typical ocean range, they change their swimming direction to go back."
Putman and his colleagues previously showed that migrating sea turtles rely on magnetic fields to detect both their north-south and east-west positions (see http://www.eurekalert.org/pub_releases/2011-02/cp-mst021611.php). Prior to that discovery, there had been considerable doubt that magnetic fields could explain how migratory animals guide themselves in the east-west direction. The researchers later reported evidence that sockeye salmon have a magnetic sense of direction, too (see http://www.eurekalert.org/pub_releases/2013-02/cp-mmg013013.php).
The new work shows that in salmon, as in sea turtles, the key is reliance not on a single feature of the magnetic field, but on a combination of two: the magnetic intensity and inclination angle. By picking up on subtle differences in both characteristics, salmon can discern their position and guide themselves accordingly. Remarkably, those navigational skills seem to require no prior life experience.
"Our findings are certainly suggestive that before the fish even hit the ocean, they have information about how they should orient to reach, or remain in, favorable locations," Putman says.
It's not entirely clear whether the fish rely on this mechanism to stay within a particular range or to find their way back once they've traveled far, he adds. Either way, the work implies that salmon are particularly sensitive to magnetic fields, something to keep in mind when rearing hatchery fish in unnatural environments built of concrete and iron rebar.
"The changes we made in our experiments were not even strong enough to deflect a compass needle," Putman says. "The fields that humans potentially expose fish to are much stronger and could easily overwhelm their ability to perceive Earth's magnetic field at a given location."
INFORMATION:
Current Biology, Putman et al.: "An inherited magnetic map guides ocean navigation in juvenile Pacific salmon."
Pacific salmon inherit a magnetic sense of direction
2014-02-06
ELSE PRESS RELEASES FROM THIS DATE:
How our immune system backfires and allows bacteria like Salmonella to grow
2014-02-06
Our immune system wages an internal battle every day to protect us against a broad range of infections. However, researchers have found that our immune response can sometimes make us vulnerable to the ...
Scientists reprogram skin cells into insulin-producing pancreas cells
2014-02-06
SAN FRANCISCO, CA—February 6, 2014—A cure for type 1 diabetes has long eluded even the top experts. Not because ...
Powerful bacterial immune response defined by new study
2014-02-06
T-cells, the elite guard of the immune system in humans and other
mammals, ignore normal biologic protocol and swing into high gear
when attacked by certain fast-moving bacteria, reports a team of
researchers ...
Histones may hold the key to the generation of totipotent stem cells
2014-02-06
One major challenge in stem cell research has been to reprogram differentiated cells to a totipotent state. Researchers from RIKEN in Japan have identified a duo of histone proteins that dramatically enhance the generation ...
The 'entrance exam' that is key to a successful pregnancy
2014-02-06
Researchers have discovered how an 'entrance exam' set by the womb determines if the implantation of an embryo is successful; potentially a milestone for advances in pregnancy treatments.
The new study, led ...
New disease gene discovery sheds light on cause of bone marrow failure
2014-02-06
The study, published in The American Journal of Human Genetics, detected and identified a new disease gene (ERCC6L2). In its normal form, the gene plays a key role in protecting ...
Link confirmed between salmon migration, magnetic field
2014-02-06
CORVALLIS, Ore. – A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth's magnetic field, suggesting it may help explain how ...
Brain asymmetry improves processing of sensory information
2014-02-06
Fish that have symmetric brains show defects in processing information about sights and smells, according to the results of a new study into how asymmetry in the brain affects processing of sensory information. ...
Research on pigeon color reveals mutation hotspot
2014-02-06
A University of Texas at Arlington team exploring pigeons as a model for vertebrate evolution has uncovered that mutations and interactions among just three genes create a wide variety of color variations. ...
Columbia study finds hospitals don't follow infection prevention rules
2014-02-06
(NEW YORK, NY, February 6, 2014) – While most hospitals have polices in place to prevent health care-associated infections, ...