PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A road map -- and dictionary -- for the arthropod brain

By providing a standardized nomenclature for the architecture of insect brains, UA neuroscientists will help improve studies of human brain function and disease

A road map -- and dictionary -- for the arthropod brain
2014-02-27
(Press-News.org) When you're talking about something as complex as the brain, the task isn't any easier if the vocabulary being used is just as complex. An international collaboration of neuroscientists has not only tripled the number of identified brain structures, but created a simple lexicon to talk about them, which will be enormously helpful for future research on brain function and disease.

Nick Strausfeld and Linda Restifo, both professors in the Department of Neuroscience at the University of Arizona, worked with colleagues in Japan who led the project, and colleagues in Germany and in the UK to produce a comprehensive atlas of neuroanatomical centers and computational centers of the insect brain. In the process, the team identified many previously unknown structures. By providing the research community with a unified system of terminology, they set the stage for a systematic effort to elucidate brain structures and functions that carry over to functions of the human brain.

An article about the work appears in the scientific journal Neuron, regarded by many as one of the flagship publications of neuroscience; the online version includes an 80-page data supplement. The data will be publicly available within 6 months and include hundreds of images and 3-D video animations – amounting to an invaluable resource that will enable neuroscientists to work more efficiently, compare their results and obtain more meaningful interpretations.

"This effort provides a three-dimensional road map for describing structures for all insect brains, and enables comparisons with other arthropods," said Strausfeld, director of the UA Center for Insect Science. "It has huge value in describing network relationships between computational centers in the brain."

The project is timely as the U.S. and Europe have embarked on ambitious initiatives – President Barack Obama's BRAIN initiative and the European Union's Human Brain Project – to produce a dynamic picture of the brain that shows how individual cells and complex neural circuits interact in time and space.

In their efforts to develop strategies to explore the inner workings of the human brain, likely the most complex structure in the solar system, scientists have relied on studying the brains of model organisms such as fruit flies because their structures are simpler and easier to study in experiments.

Arthropods – insects, spiders, crustaceans and their kin – have advanced biomedical research ranging from the anatomical and molecular underpinnings of behavior to the biochemical causes of addiction. Because of their shared evolutionary history deep in time, vertebrates including humans likely share many of neuroanatomical features and functional centers in the brain with invertebrates. Studying neurological processes in arthropods can significantly help us to understand how all brains work.

The processes leading to Parkinson's disease, for example, are extremely difficult to investigate in humans, but research with fruit flies has yielded valuable information that could help neurologists develop therapeutic strategies.

As a result of this joint effort to catalog and map the insect brain, this group of scientists has discovered that the pinhead-sized brain of a fruit fly has more than 50 anatomically distinct centers approaching a complexity until now only recognized in animals such as fish or mice.

"There are fascinating parallels," Strausfeld said. "By recognizing discrete centers in the insect brain, we will better understand how elaborations of the brains of insects and vertebrates might relate to each other despite more than 600 million years of divergent evolution."

For example, the olfactory bulbs in vertebrates are very similar to the olfactory lobes in crustaceans. The same goes for the visual system: Color, shape, motion and texture are similarly processed in vertebrates and insects, although very different aspects of the visual world are perceived by a fly compared with those perceived by a monkey or a human, Strausfeld explained.

The study was led by Kei Ito, an associate professor in the Department of Computational Biology at the University of Tokyo. His group used a technique called confocal fluorescence microscopy to create virtual "slices" revealing the fruit fly brain architecture down to single cells.

Five years and 1,200 emails later, the project now provides neuroscientists with the same terms to describe specific parts of brains of insects and crustaceans. "We are setting a new standard that really enables communication," the UA authors agreed.

"We now have a very detailed understanding of the distribution of neurons in discrete centers and the connections amongst them," Strausfeld explained.

"The complexity of insect behavior is increasingly recognized by the genetics community to allow us to model various human diseases," said Restifo, who also is professor of neurology in the UA College of Medicine and member of the UA BIO5 Institute.

"These tiny, but now well-defined, regions we see in the insect brain probably have particular neurons with particular connections driving certain behaviors that are becoming ever more important in studying behavior like aggression or addiction."

Restifo explained that combining the expanded behavioral repertoire of humans with that observed in insects makes a strong case for using model organisms such as the fruit fly, Drosophila, in the quest for new drugs.

"In some ways, insects are going to be even more useful than rodent models," she said. "In some cases, efforts to get to the cause of a disease by disrupting gene function in mice fail to provide answers because even though the genetic mutation matches that of the human disease, the physiological effects don't."

To be meaningful, any study of complex nervous systems requires concepts and terminology uniformly agreed upon by the research community.

Neuroscientists have long known that anatomically distinctive regions are clues to how the brain is organized, but different terms have been in use for the same structure in different – or even within the same – species. "In reality, a rose by any other name is more like a Tower of Babel," Restifo said. "There has been enormous confusion."

Strausfeld, who published the first atlas on the insect brain in 1976 – and, together with Ito and colleagues in Germany, the first National Science Foundation Online Atlas of the Drosophila Brain – established much of the initial nomenclature. The UA Center for Insect Science also was instrumental in supporting the efforts that led to the study's publication. Strausfeld said an important driver of the present project was the need to establish the appropriateness of specific terms and names for neural structures across arthropod brains.

"Nothing quite like this has been done before," he said. "Scientists studying the brains and behavior of birds had come to an agreed-upon nomenclature, but we were trying to find common ground across many species that may be more distinct from each other in terms of evolutionary divergence. Thus, adding to the enormity of the task was the goal of agreeing on terminology that would 'fit' for all insects and be applicable to crustaceans."

"Developing a standardized nomenclature is important because it facilitates cross-fertilization of work done using different insect species," said Gerald Rubin, vice president and executive director of the Janelia Farm Research Campus of the Howard Hughes Medical Institute. "Pulling this together required a lot of work, scientific insight and historical knowledge; it was a real service to the field."

INFORMATION: The authors on the paper are: Kei Ito, Kazunori Shinomiya and Masayoshi Ito (University of Tokyo), J. Douglas Armstrong (School of Informatics, University of Edinburgh), George Boyan (Ludwig-Maximilians-University, Munich), Volker Hartenstein (University of California, Los Angeles), Steffen Harzsch (University of Greifswald, Germany), Martin Heisenberg (Julius-Maximilians-University of Würzburg, Germany), Uwe Homberg (Philipps-University of Marburg, Germany), Arnim Jenett and Julie Simpson (Howard Hughes Medical Institute at Janelia Farms, Va.), Haig Keshishian (Yale University, New Haven, Conn.), Linda Restifo (UA), Wolfgang Roessler (Julius-Maximilians-University of Würzburg, Germany), Nicholas Strausfeld (UA), Roland Strauss (Johannes-Gutenberg-University of Mainz, Germany) and Leslie B. Vosshall (Rockefeller University, New York).

[Attachments] See images for this press release:
A road map -- and dictionary -- for the arthropod brain A road map -- and dictionary -- for the arthropod brain 2 A road map -- and dictionary -- for the arthropod brain 3

ELSE PRESS RELEASES FROM THIS DATE:

Low birth weight reduces ability to metabolize drugs

2014-02-27
PORTLAND, Ore. – Researchers have identified another concern related to low birth weight – a difference in how the body reacts to drugs, which may last a person's entire life and further complicate treatment of illnesses or diseases that are managed with medications. The findings add to the list of health problems that are already known to correspond to low birth weight, such as a predisposition for adult-onset diabetes, hypertension, and obesity. The implication, researchers say, is that low birth weight may not only cause increased disease, but it may also lessen the ...

Experimental treatment developed at UCLA eradicates acute leukemia in mice

2014-02-27
A diverse team of scientists from UCLA's Jonsson Comprehensive Cancer Center has developed an experimental treatment that eradicates an acute type of leukemia in mice without any detectable toxic side effects. The drug works by blocking two important metabolic pathways that the leukemia cells need to grow and spread. The study, led by Dr. Caius Radu, an associate professor of molecular and medical pharmacology at UCLA, and Dr. David Nathanson, an assistant professor of molecular and medical pharmacology, was published in the Journal of Experimental Medicine. Elements ...

Huntington proteins and their nasty 'social network'

2014-02-27
Researchers at the Buck Institute have identified and categorized thousands of protein interactions involving huntingtin, the protein responsible for Huntington's disease (HD). To use an analogy of a human social network, the identified proteins are like "friends" and "friends of friends" of the HD protein. The network provides an invaluable resource for identifying targets to treat the disease and has been used to implicate a particular signaling pathway involved in cell motility. HD is an incurable, fatal, inherited neurological disorder that causes severe degeneration ...

Disney researchers look beyond basketball stats to analyze team movement in getting shots

2014-02-27
Everyone knows a basketball player is more likely to miss a three-point shot if a defender is in his face, but a new automated method for analyzing team formations, created by Disney Research Pittsburgh, shows how players get open for a shot: via defensive role swaps. "To an expert, this makes obvious sense – if a defensive player has to move, the space where they moved from is suddenly open and, if their teammate doesn't cover that space quickly, it creates a potential open shot for the offense," said Patrick Lucey, a Disney researcher who specializes in measuring the ...

Disney Research soccer formations analysis suggests home advantage is result of execution

2014-02-27
An automated analysis by Disney Research Pittsburgh of team formations used during an entire season of professional soccer provides further evidence that visiting teams are less successful than home teams because they play conservatively, not because of a mythical home advantage. The researchers, employing the first automated method for detecting formations, analyzed a whole season of player and ball tracking data compiled by Prozone for a top-tier professional soccer league. They found that teams usually played the same formations for both home and away games, but that ...

Altruistic suicide in organisms helps relatives

Altruistic suicide in organisms helps relatives
2014-02-27
The question of why an individual would actively kill itself has been an evolutionary mystery. Death could hardly provide a fitness advantage to the dying individual. However, a new study has found that in single-celled algae, suicide benefits the organism's relatives. "Death can be altruistic – we showed that before – but now we know that programmed cell death benefits the organism's relatives and not just anybody," says Dr Pierre Durand from the Department of Molecular Medicine and Haematology and the Sydney Brenner Institute for Molecular Bioscience (SBIMB) at Wits ...

After death, twin brains show similar patterns of neuropathologic changes

2014-02-27
Despite widespread use of a single term, Alzheimer's disease is actually a diverse collection of diseases, symptoms and pathological changes. What's happening in the brain often varies widely from patient to patient, and a trigger for one person may be harmless is another. In a unique study, an international team of researchers led by USC psychologist Margaret Gatz compared the brains of twins where one or both died of Alzheimer's disease. They found that many of the twin pairs not only had similar progressions of Alzheimer's disease and dementia prior to death, but they ...

Closest, brightest supernova in decades is also a little weird

Closest, brightest supernova in decades is also a little weird
2014-02-27
A bright supernova discovered only six weeks ago in a nearby galaxy is provoking new questions about the exploding stars that scientists use as their main yardstick for measuring the universe. Called SN 2014J, the glowing supernova was discovered by a professor and his students in the United Kingdom on Jan. 21, about a week after the stellar explosion first became visible as a pinprick of light in its galaxy, M82, 11.4 million light years away. Still visible today through small telescopes in the Big Dipper, it is the brightest supernova seen from Earth since SN1987A, ...

Cushing's syndrome: A genetic basis for cortisol excess

2014-02-27
An international team of researchers led by an endocrinologist at Ludwig-Maximilians-Universitaet (LMU) in Munich has identified genetic mutations that result in uncontrolled synthesis and secretion of the stress hormone cortisol. Cortisol is a hormone that is produced by the adrenal gland in response to stressful events, and modulates a whole spectrum of physiological processes. An international research collaboration has now identified genetic mutations that lead to the production and secretion of cortisol in the absence of an underlying stressor. The discovery emerged ...

Why dark chocolate is good for your heart

2014-02-27
It might seem too good to be true, but dark chocolate is good for you and scientists now know why. Dark chocolate helps restore flexibility to arteries while also preventing white blood cells from sticking to the walls of blood vessels. Both arterial stiffness and white blood cell adhesion are known factors that play a significant role in atherosclerosis. What's more, the scientists also found that increasing the flavanol content of dark chocolate did not change this effect. This discovery was published in the March 2014 issue of The FASEB Journal. "We provide a more ...

LAST 30 PRESS RELEASES:

Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution

“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot

Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows

USC researchers observe mice may have a form of first aid

VUMC to develop AI technology for therapeutic antibody discovery

Unlocking the hidden proteome: The role of coding circular RNA in cancer

Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC

Study reveals widening heart disease disparities in the US

The role of ubiquitination in cancer stem cell regulation

New insights into LSD1: a key regulator in disease pathogenesis

Vanderbilt lung transplant establishes new record

Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine

Metasurface technology offers a compact way to generate multiphoton entanglement

Effort seeks to increase cancer-gene testing in primary care

Acoustofluidics-based method facilitates intracellular nanoparticle delivery

Sulfur bacteria team up to break down organic substances in the seabed

Stretching spider silk makes it stronger

Earth's orbital rhythms link timing of giant eruptions and climate change

Ammonia build-up kills liver cells but can be prevented using existing drug

New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock

Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza

New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance

nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip

Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure

Fluoride in drinking water is associated with impaired childhood cognition

New composite structure boosts polypropylene’s low-temperature toughness

While most Americans strongly support civics education in schools, partisan divide on DEI policies and free speech on college campuses remains

Revolutionizing surface science: Visualization of local dielectric properties of surfaces

LearningEMS: A new framework for electric vehicle energy management

Nearly half of popular tropical plant group related to birds-of-paradise and bananas are threatened with extinction

[Press-News.org] A road map -- and dictionary -- for the arthropod brain
By providing a standardized nomenclature for the architecture of insect brains, UA neuroscientists will help improve studies of human brain function and disease