(Press-News.org) LA JOLLA, CA—March 13, 2014—Chemists at The Scripps Research Institute (TSRI) have devised a greatly improved technique for making amino acids not found in nature. These "unnatural" amino acids traditionally have been very difficult to synthesize, but are sought after by the pharmaceutical industry for their potential medical uses.
"This new technique offers a very quick way to prepare unnatural amino acids, many of which are drug candidates or building blocks for peptide drugs," said Jin-Quan Yu, a professor in TSRI's Department of Chemistry.
Yu's team has reported the achievement as a research article in the March 14, 2014 issue of the journal Science.
Expanding Nature's Alphabet
Amino acids are among the most basic components of living things. Long chains of them, translated from DNA, fold up to become proteins. Some smaller groupings of amino acids form hormones, and a few single amino acids function as signal-carrying neurotransmitters in the brain.
However, just 21 amino acids are found in human proteins, and only a handful of others have significant roles outside protein-making. In all, several hundred natural amino acids have been catalogued in living organisms. Yet thousands more are theoretically possible, and researchers expect that many of these unnatural amino acids will be medically useful. "They offer great structural diversity," Yu said. Moreover, with their unnatural structures they will often be relatively resistant to the housekeeping enzymes that break down and recycle natural amino acids in cells, and thus should last longer in the body.
The numerous proposed applications of unnatural amino acids include anti-cancer drugs, antibiotics that will be able to thwart bacterial resistance, and drugs that inhibit the formation of amyloid aggregates such as those seen in Alzheimer's, Parkinson's and other diseases.
In principle, an unnatural amino acid can be made by taking a natural amino acid—or a closely related molecule—and chemically modifying it. A common strategy is to attach new molecules to the second of the two core carbon atoms in the amino acid—the "beta" carbon that in natural amino acids is left relatively bare of complex attachments.
Over the past decade, chemists have developed better and better methods for making this kind of modification, but it involves the breaking of very tough carbon-hydrogen bonds, and major obstacles have remained.
Clever Chemistry
However, in the research described in the new paper, Yu's group, including first authors Jian He, a graduate student, and Suhua Li, a postdoctoral fellow, found a significantly easier method for making this type of modification.
The new method employs special "ligand" compounds, derived from the simple organic chemicals pyridine and quinoline, to enhance the ability of a standard palladium catalyst to break the carbon-hydrogen bonds. Yu's team showed that they could use the pyridine and the quinoline to cut two of these tough bonds in a desired sequence and in each case attaching a molecule from a broad class of simple organic compounds known as aryls. Alternatively, the scientists could use the quinoline to attach a common molecule known as an olefin. In both cases they achieved the feat more quickly and simply than had ever been done before.
"Many carbon-hydrogen activation reactions that were once out of reach are now possible with these new ligands," said Yu.
Indeed, based on detailed studies of how the pyridine and quinoline ligands accelerate these reactions, Yu and his laboratory are already working with second-generation ligands and faster reactions.
Yu's laboratory is part of a collaboration agreement between TSRI and the pharmaceutical giant Bristol-Myers Squibb. "Under this agreement we are putting the new methods to work to discover novel drug candidates," Yu said. "In general, we expect that these new developments will greatly expand the scope of research on unnatural amino acids as potential drugs or drug building-blocks."
INFORMATION:
The other co-authors of the paper, "Ligand-Controlled C(sp3)–H Arylation and Olefination in Synthesis of Unnatural Chiral a–Amino Acids," were Youqian Deng, Brian N. Laforteza, Jillian E. Spangler and Anna Homs, all of TSRI at the time of the research, and Haiyan Fu, a visiting scholar from Sichuan University.
The research was supported by the National Institute of General Medical Sciences (grant 2R01GM084019) and Bristol-Myers Squibb.
Scripps Research Institute scientists discover a better way to make unnatural amino acids
The findings have potential applications in cancer, infectious disease, Alzheimer's drugs
2014-03-13
ELSE PRESS RELEASES FROM THIS DATE:
Scientists find new way to upgrade natural gas
2014-03-13
America's current energy boom may take a new direction thanks to the discovery of a new way to turn raw natural gas into upgraded liquid alcohol fuel.
In the March 14 issue of Science magazine, chemists from Brigham Young University and The Scripps Research Institute detail a process that could reduce dependence on petroleum.
The most unexpected breakthrough in the paper was that ordinary "main group" metals like thallium and lead can trigger the conversion of natural gas to liquid alcohol. The research teams saw in experiments that natural gas to alcohol conversion ...
Stumbling fruit flies lead scientists to discover gene essential to sensing joint position
2014-03-13
LA JOLLA, CA—March 13, 2014—Scientists at The Scripps Research Institute (TSRI) have discovered an important mechanism underlying sensory feedback that guides balance and limb movements.
The finding, which the TSRI team uncovered in fruit flies, centers on a gene and a type of nerve cell required for detection of leg-joint angles. "These cells resemble human nerve cells that innervate joints," said team leader Professor Boaz Cook, who is an assistant professor at TSRI, "and they encode joint-angle information in the same way."
If the findings can be fully replicated ...
A novel battleground for plant-pathogen interactions
2014-03-13
Scientists at The Sainsbury Laboratory in Norwich, with collaborators at Michigan State University and the University of Illinois, have unveiled a new way in which plants perceive pathogens to activate immunity.
They also show how pathogens inhibit the mechanism to cause disease. It was previously only associated with other processes in mammalian cells.
When plants detect microbial molecules, they trigger immune responses to prevent disease. Although several plant immune receptors for these microbial molecules are known, how they are activated once the microbe is recognised ...
When big isn't better: How the flu bug bit Google
2014-03-13
Numbers and data can be critical tools in bringing complex issues into crisp focus. The understanding of diseases, for example, benefits from algorithms that help monitor their spread. But without context, a number may just be a number, or worse, misleading.
"The Parable of Google Flu: Traps in Big Data Analysis" is published in the journal Science, funded, in part, by a grant from the National Science Foundation. Specifically, the authors examine Google's data-aggregating tool Google Flu Trend (GFT), which was designed to provide real-time monitoring of flu cases around ...
More to biological diversity than meets the eye
2014-03-13
Most of us already imagine the tropics as a place of diversity—a lush region of the globe teeming with a wide variety of exotic plants and animals. But for researchers Andrew Forbes and Marty Condon, there's even more diversity than meets the eye.
In a paper published in the March 14 issue of the journal Science, Forbes and Condon report the discovery of extraordinary diversity and specialization in the tropics.
The paper builds upon previous research conducted by Condon, who discovered surprising diversity while researching plant species in South America. Later, she, ...
Saving large carnivores in the ecosystem requires multifaceted approach
2014-03-13
Carnivore management is not just a numbers game, Virginia Tech wildlife scientists assert in response to an article in the Jan. 10 issue of the journal Science that urged "minimum population densities be maintained for persistence of large carnivores, biodiversity, and ecosystem structure."
"This type of approach may fail in social carnivore species," said Kathleen Alexander, an associate professor of fisheries and wildlife conservation in the College of Natural Resources and Environment. "Predator management is incredibly complex and we need to be extremely cautious ...
Unraveling a mystery in the 'histone code' shows how gene activity is inherited
2014-03-13
Cold Spring Harbor, NY – Every cell in our body has exactly the same DNA, yet every cell is different. A cell's identity is determined by the subset of genes that it activates. But how does a cell know which genes to turn off and which to turn on? While the genetic code carried in our DNA provides instructions for cells to manufacture specific proteins, it is a second code that determines which genes are in fact activated in particular cell types.
This second code is carried by proteins that attach to DNA. The code-carrying proteins are called histones. Today, researchers ...
Understanding how mountains and rivers make life possible
2014-03-13
Favorable conditions for life on Earth are enabled in part by the natural shuttling of carbon dioxide from the planet's atmosphere to its rocky interior and back again. Now Stanford scientists have devised a pair of math equations that better describe how topography, rock compositions and the movement of water through a landscape affects this vital recycling process.
Scientists have long suspected that the so-called the geologic carbon cycle is responsible for Earth's clement and life-friendly conditions because it helps regulate atmospheric concentrations of carbon dioxide, ...
Deficient protein GM-CSF production found to impair gut's immune tolerance
2014-03-13
New York, NY – The protein GM-CSF plays a critical role in maintaining immune tolerance in the gut, with defects in the protein increasing the susceptibility to inflammatory bowel diseases (IBD), according to a new mouse study by a team of researchers from the Icahn School of Medicine at Mount Sinai. IBD is a severe intestinal disease characterized by chronic intestinal inflammation that results from a dysregulated immune response to microbes and food antigens. Writing in the peer reviewed journal Science published online March 13, 2014, the research team writes that this ...
Stirring the simmering 'designer baby' pot
2014-03-13
(Garrison, NY) From genetic and genomic testing to new techniques in human assisted reproduction, various technologies are providing parents with more of a say about the children they have and "stirring the pot of 'designer baby' concerns," writes Thomas H. Murray, President Emeritus of The Hastings Center, in a commentary in Science.
Murray calls for a national conversation about how much discretion would-be parents should have. "Preventing a lethal disease is one thing; choosing the traits we desire is quite another," he writes.
He discusses public hearings two weeks ...
LAST 30 PRESS RELEASES:
Pledge to phase out toxic lead ammunition in UK hunting by 2025 has failed
Possible foundations of human intelligence observed for the first time
Breast cancer death rates have stopped going down
Developing zero-waste, sustainable smart polymer materials
AI has ‘great potential’ for detecting wildfires, new study of the Amazon rainforest suggests
Magnetic catalysts enhance tumor treatment via electronic density regulation
Quantum dot discovery for LEDs brings brighter, more eco-friendly displays
Phosphorus doping stabilizes high-energy polymeric nitrogen at ambient pressure
Maternal cannabis use triples risk of disruptive behaviour in children
Balancing Nutrition: Micronutrient study could help prevent childhood obesity in Pacific region
Lightening the load of augmented reality glasses
Sneaky clocks: uncovering Einstein’s relativity in an interacting atomic playground
The chances of anything coming from Mars
Scientists unlock clues to new treatments for muscular dystrophy
Anti-obesity drugs benefit kidney transplant recipients with type 2 diabetes
Cases of Parkinson’s disease set to reach 25 million worldwide by 2050
Throat microbiome holds clues to older Australians’ health
Diabetes drug could help cancer patients make better recovery
Seismic study of Singapore could guide urban construction and renewable energy development
Tufts scientists develop open-source software for modeling soft materials
Repurposed ALS drug becomes imaging probe to help diagnose neurodegeneration
AI can open up beds in the ICU
Are robotic hernia repairs still in the “learning curve” phase?
New STI impacts 1 in 3 women: Landmark study reveals men are the missing link
Feeling is believing: Bionic hand “knows” what it’s touching, grasps like a human
Damon Runyon Cancer Research Foundation awards $4.4 million to top young scientists
Over-the-counter pain relievers linked to improved recovery from concussion
Stressed out? It may increase the risk of stroke
Nanoscale tweaks help alloy withstand high-speed impacts
AI-generated voices which sound like you are perceived as more trustworthy and likeable, with implications for deep-fakes and manipulation
[Press-News.org] Scripps Research Institute scientists discover a better way to make unnatural amino acidsThe findings have potential applications in cancer, infectious disease, Alzheimer's drugs