(Press-News.org) CHICAGO - Plaque in a heart artery looks threatening, but cardiologists know that many of these buildups will not erupt, dislodge and block a vessel, causing a heart attack that can be fatal. Some will, however, and the challenge is to figure out atherosclerotic plaque that is dangerous and treat or remove it.
Now, researchers at Mayo Clinic have shown that iron, derived from blood, is much more prevalent in the kind of plaque that is unstable and is thus more likely to promote a myocardial infarction (MI) - heart attack - and possibly sudden death.
The team of researchers has demonstrated through a variety of experiments that iron buildup may be suitable as a marker of risk for a future MI, they reported today at the American Heart Association's Scientific Sessions 2010 in Chicago.
For example, they have found that Dual Energy Computed Tomography (DECT) and three-dimensional computerized tomography (CT) micro scans can detect excess iron in plaque, thus holding promise that in the future a scanning device might be able to noninvasively detect dangerous plaque formations in patients.
"We know that 70 percent of heart attacks are caused by unstable plaque, so what we really need for our patients is a way to identify the plaque that turns evil and puts them at jeopardy," says cardiologist Birgit Kantor, M.D., the study's lead researcher. "The scans we use now just show narrowing of heart arteries from plaque buildup but that doesn't tell us if the plaque inside those vessels walls is imminently dangerous."
"We think it is possible, based on these findings, to use iron as a natural marker for risk," she says. Dr. Kantor predicts that probably 5-10 years will pass before novel diagnostic scanners to identify these plaques become available in cardiology clinics.
Testing iron as a marker in human arteries
Excess iron in atherosclerotic plaque was noticed decades ago, but little research followed up on that observation, Dr. Kantor says. "The hypothesis then was that iron was the poison that created the plaque, but that was never proven and is in fact unlikely."
Cardiologists now know that plaque can be classified as stable or unstable. Mayo Clinic researchers believe that the amount of iron in the plaque can be seen as a "readout" of prior hemorrhagic, or bleeding, events that put a person at risk for plaque eruption.
In normal heart arteries, small blood vessels known as vasa vasorum bring nutrients to the vessel wall, and when plaque starts to build up inside the artery wall, some of these tiny vessels grow as well to feed them. These vessels can rupture, depositing iron, a component of blood, into the growing plaque. This unstable plaque, which has a large core of dead cells covered by a thin fibrous cap, can eventually rupture, forming a big blood clot that can shut down a heart artery.
"This kind of plaque can bleed and heal, bleed and heal, depositing iron into the buildup," Dr. Kantor says. "This plaque is at risk of breaking up and causing a heart attack."
To conduct this study, the researchers used samples from a unique Mayo Clinic biobank of heart arteries collected over time from autopsies of 400 patients who died from a suspected heart attack. Small sections (1.5 inches) from the three main coronary arteries of each patient have been preserved.
In this study, pathologists examined 97 artery samples and separated them into stable and unstable groups based on their appearance under a microscope (dead zones and fiber cap). They classified 31 plaques as stable, 24 as "vulnerable," and 22 as normal and then linked them to patient clinical records to see which patients died from a heart attack.
Then Yu Liu, M.D., Ph.D., the study's first author, applied a stain to the samples to detect iron content. She found iron content in the unstable plaque group was significantly higher than in the other groups. Iron was absent in normal arteries.
In a third step, the researchers scanned a subset of the artery segments using a benchtop micro-CT scanner, and created 3-D images to look for iron deposits in plaque. The CT could identify iron in plaque without the need for staining. "There was a high correlation between the vulnerability of the plaque and the quantity of iron in it," says Dr. Kantor.
Still, non-invasive imaging for plaque does not yet have the necessary resolution to differentiate high risk from low risk plaque in patients, she says, and so the research team is testing other imaging modalities such as photon counting that can overcome these barriers.
INFORMATION:
Other study authors are Nitin Garg, M.B.B.S.; Joseph Maleszewski, M.D.; Steven Jorgensen; Jia Wang, Ph.D.; Xinhui Duan, Ph.D.; Shuai Leng, Ph.D.; Kay Parker; Cynthia McCollough, Ph.D.; and Erik Ritman, M.D., Ph.D.; all of Mayo Clinic.
About Mayo Clinic
Mayo Clinic is a non-profit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news.
END
Cutting back on salt in teenagers' diets by as little as one-half teaspoon, or three grams, a day, could reduce the number of young adults with high blood pressure by 44 to 63 percent, according to new research presented Sunday, Nov. 14 at the American Heart Association's Scientific Sessions 2010 meeting in Chicago.
The findings indicate that the food industry and those who regulate it could substantially improve the nation's health through even small reductions in the amount of salt in processed foods, which account for the majority of salt consumed in this country.
"The ...
HOUSTON - Red-blood-cell-boosting drugs used to treat anemia may undermine breast cancer treatment with Herceptin, a targeted therapy that blocks the cancer-promoting HER2 protein, researchers from The University of Texas MD Anderson Cancer Center report in the Nov. 16 edition of Cancer Cell.
"Our research indicates when the two drugs were used at the same time, Herceptin was less effective," said study senior author Zhen Fan, M.D., associate professor in MD Anderson's Department of Experimental Therapeutics.
Natural erythropoietin (EPO) controls the body's red blood ...
CINCINNATI—University of Cincinnati (UC) researchers have found that applying a stem cell-infused patch together with overexpression of a specific cell instruction molecule promoted cell migration to damaged cardiac tissue following heart attack and resulted in improved function in animal models.
The researchers also found that function improved more so than when stem cells were directly injected in heart tissue—a therapy that is being studied elsewhere.
These findings are being presented for the first time at the American Heart Association's Scientific Meeting in Chicago ...
ANN ARBOR, Mich.---Ultra-short X-ray beams produced at the University of Michigan could one day serve as more sensitive medical diagnostic tools, and they could work like strobe lights to allow researchers to observe chemical reactions that happen in quadrillionths of a second.
The researchers used the HERCULES high-intensity, table-top laser to create X-ray beams that rival those made in expensive and massive synchrotron particle accelerators. The National Synchrotron Light Source II, for example, under construction at Brookhaven National Laboratory, is slated to be ...
The Earth is constantly manufacturing new crust, spewing molten magma up along undersea ridges at the boundaries of tectonic plates. The process is critical to the planet's metabolism, including the cycle of underwater life and the delicate balance of carbon in the ocean and atmosphere.
Now, scientists at the Woods Hole Oceanographic Institution (WHOI) have observed ocean crust forming in an entirely unexpected way—one that may influence those cycles of life and carbon and, in turn, affect the much-discussed future of the world's climate.
Working at the Guaymas basin ...
(Cincinnati, OH) – A groundbreaking study published Friday in the leading scientific journal, Cell, revealed that a team of investigators had successfully generated nerve cells using skin cells from four individuals with Rett syndrome. The study, funded in part by IRSF, was led by Dr. Alysson Muotri at the University of California, San Diego--a leading researcher in the stem cell field.
The article, titled 'A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells,' describes how the team used a newly-devised procedure ...
What are the key characteristics that voters consider when they're choosing their candidate for president? New research led by Judith Trent, a professor of communication at the University of Cincinnati, yields some surprising findings from surveys from the 2008 primary campaign in New Hampshire – a historic campaign in itself because of the diverse demographic characteristics of some of the leading contenders. The top ideal quality picks are a candidate's honesty and willingness to talk about the challenges affecting the nation.
The article, titled, "Cracked and Shattered ...
ANN ARBOR, Mich---University of Michigan researchers have determined that most types of melanoma cells can form malignant tumors, providing new evidence that the deadliest form of skin cancer does not conform to the increasingly popular cancer stem cell model.
In addition, the researchers found that melanoma tumor cells can change their appearance by switching various genes on and off, making the malignant cells a stealthy, shape-shifting target for researchers seeking new treatments, according to a team led by Sean Morrison, director of the U-M Center for Stem Cell Biology.
Both ...
Like us, plants rely on an immune system to fight off disease. Proteins that scout out malicious bacterial invaders in the cell and communicate their presence to the nucleus are important weapons in the plant's disease resistance strategy. Researchers at the University of Missouri recently "tapped" into two proteins' communications with the nucleus and discovered a previously unknown level of cross talk. The discovery adds important new information about how plant proteins mediate resistance to bacteria that cause disease and may ultimately lead to novel strategies for ...
The traditional way to predict whether children can regain movement after spinal cord injuries may exclude a small subset of patients who could benefit from therapy, according to two studies presented by University of Florida researchers at the Society for Neuroscience meeting this week in San Diego.
In one study, researchers present details of a child with incomplete spinal cord injury who continues to improve four years after recovering walking ability in a locomotor training program at UF, even though clinical assessment tools predicted he would never walk again.
In ...