(Press-News.org) New insights into a surprisingly flexible immune system present in bacteria for combating viruses and other foreign DNA invaders have been revealed by researchers from New Zealand's University of Otago and the Netherlands.
A team led by Dr Peter Fineran of the Department of Microbiology and Immunology are studying the genetic basis of adaptive immunity in bacteria that cause potato 'soft rot' and in E. coli bacteria. Through their recent collaboration they have found that these bacterial immune systems are much more robust and responsive than previously thought.
Their latest findings, which appear in the leading US journal PNAS, have implications for improving our understanding of bacterial evolution, including the spread of antibiotic resistance genes.
The researchers are investigating an adaptive immune system, termed CRISPR-Cas, which is found in half of all bacterial species and in almost all single-celled microbes in the archaea domain.
CRISPR-Cas's role in providing immunity was only discovered in the past decade. The system creates a genetic memory of specific past infections by viruses and plasmids, which are small mobile DNA molecules that can move between organisms.
Dr Fineran says the system steals samples of the invader's genetic material and stores them in a memory bank so it can immediately recognise future exposures and neutralise the attack.
It can store up to 600 samples and can also pass on these memories to subsequent generations of bacteria.
It had been thought that the system had an Achilles heel because invaders that had acquired too many mutations could no longer be recognised as they did not match the stored sample closely enough.
"What we have now discovered is that while the viruses and plasmids can evade direct recognition by acquiring multiple mutations, the system is primed to quickly generate a new immunity by grabbing a new sample of the mutated genetic material."
"It's a remarkably flexible and robust immune system for such simple single-celled organisms."
Dr Fineran says the system reflected the ancient and continuing co-evolutionary arms race between bacteria on one side, and viruses and plasmids on the other.
Viral infections of bacteria also exert a powerful yet invisible effect on the entire planet, says Dr Fineran.
"Their silent but vast and ongoing war underpins everything from how global nutrient cycles—which rely on bacteria to produce half of the Earth's biomass —operate, to how human pathogens evolve," he says.
"For example, the bacteria that cause cholera and diphtheria have been infected by viruses that provide genes coding for toxins, which converted these bacteria into significant human pathogens."
Plasmids are also key players in moving antibiotic resistance genes between different bacterial species.
"So, discovering more about exactly how bacterial immune systems combat plasmid transfer and acquisition is of considerable interest," he says.
INFORMATION:
Dr Fineran's research was supported by a Rutherford Discovery Fellowship from the Royal Society of New Zealand and his co-authors include researchers from several institutions in the Netherlands. One co-author, Raymond Staals, has recently joined Dr Fineran's Laboratory under a Division of Health Sciences Career Development Post-doctoral Fellowship.
New light shed on key bacterial immune system
2014-04-07
ELSE PRESS RELEASES FROM THIS DATE:
Genes increase the stress of social disadvantage for some children
2014-04-07
Genes amplify the stress of harsh environments for some children, and magnify the advantage of supportive environments for other children, according to a study that's one of the first to document how genes interacting with social environments affect biomarkers of stress.
"Our findings suggest that an individual's genetic architecture moderates the magnitude of the response to external stimuli—but it is the environment that determines the direction" says Colter Mitchell, lead author of the paper and a researcher at the University of Michigan Institute for Social Research ...
Targeting sperm protection in mosquitoes could help combat malaria
2014-04-07
Researchers have discovered a way of reducing the fertility of malaria-carrying mosquitoes, potentially providing a new tactic to combat the disease.
Anopheles gambiae mosquitoes are the main transmitters of malaria, which affects around 200 million people every year. The females mate only once during their lives. They store the sperm from this single mating in an organ called the spermatheca, from which they repeatedly take sperm over the course of their lifetime to fertilise the eggs that they lay..
The female needs the sperm to stay healthy whilst they are in storage ...
Solution to platelet 'puzzle' uncovers blood disorder link
2014-04-07
Melbourne researchers have solved a puzzle as to how an essential blood-making hormone stimulates production of the blood clotting cells known as platelets.
Platelets are essential for stopping bleeding and are produced by small fragments breaking off their 'parent' cells, called megakaryocytes.
The discovery, made by scientists at the Walter and Eliza Hall Institute, identified how bone marrow cells could become overstimulated and produce too many platelets. In blood diseases such as essential thrombocythemia, too many platelets can lead to clogging of the blood vessels, ...
Seeing double: New study explains evolution of duplicate genes
2014-04-07
From time to time, living cells will accidently make an extra copy of a gene during the normal replication process. Throughout the history of life, evolution has molded some of these seemingly superfluous genes into a source of genetic novelty, adaptation and diversity. A new study shows one way that some duplicate genes could have long-ago escaped elimination from the genome, leading to the genetic innovation seen in modern life.
Researchers have shown that a process called DNA methylation can shield duplicate genes from being removed from the genome during natural selection. ...
Antibiotic resistance enzyme caught in the act
2014-04-07
Resistance to an entire class of antibiotics – aminoglycosides -- has the potential to spread to many types of bacteria, according to new biochemistry research.
A mobile gene called NpmA was discovered in E. coli bacteria isolated from a Japanese patient several years ago. Global spread of NpmA and related antibiotic resistance enzymes could disable an entire class of tools doctors use to fight serious or life-threatening infections.
Using X-ray crystallography, researchers at Emory University School of Medicine made an atomic-scale snapshot of how the enzyme encoded ...
A middle road for Medicaid expansion?
2014-04-07
ANN ARBOR, Mich. — With the political divide over health care reform still strong going into this year's elections, a new analysis of state-level decisions shows signs of an emerging middle way toward reducing the ranks of the uninsured.
The approach centers on efforts by governors and legislatures to get federal permission to customize Medicaid expansion in ways that satisfy political conservatives – while still allowing them to collect federal funding to increase health insurance coverage in their state.
In a new Viewpoint published online by the Journal of the American ...
Researchers: Permafrost thawing could accelerate global warming
2014-04-07
TALLAHASSEE, Fla. — A team of researchers lead by Florida State University have found new evidence that permafrost thawing is releasing large quantities of greenhouse gases into the atmosphere via plants, which could accelerate warming trends.
The research is featured in the newest edition of the Proceedings of the National Academy of Sciences.
"We've known for a while now that permafrost is thawing," said Suzanne Hodgkins, the lead author on the paper and a doctoral student in chemical oceanography at Florida State. "But what we've found is that the associated changes ...
New research suggests connection between white matter and cognitive health
2014-04-07
LEXINGTON, Ky. (April 7, 2014) -- A multidisciplinary group of scientists from the Sanders-Brown Center on Aging at the University of Kentucky have identified an interesting connection between the health of the brain tissue that supports cognitive functioning and the presence of dementia in adults with Down syndrome.
Published in the Neurobiology of Aging, the study, which focused on detecting changes in the white matter connections of the brain, offers tantalizing potential for the identification of biomarkers connected to the development of dementia, including Alzheimer's ...
Well-known cancer gene NRAS produces 5 variants, study finds
2014-04-07
COLUMBUS, Ohio – A new study shows that a gene discovered 30 years ago and now known to play a fundamental role in cancer development produces five different gene variants (called isoforms), rather than just the one original form, as thought.
The study of the NRAS gene by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) identified four previously unknown variants that the NRAS gene produces.
The finding might help improve drugs for cancers in which aberrant ...
Penn researcher finds mortality risks of being overweight or obese are underestimated
2014-04-07
New research by Andrew Stokes, a doctoral student in demography and sociology in the School of Arts and Sciences at the University of Pennsylvania, suggests that many obesity studies substantially underestimate the mortality risks associated with excess weight in the United States. His study, "Using Maximum Weight to Redefine Body Mass Index Categories in Studies of The Mortality Risks of Obesity," was published in the March issue of the open-access journal Population Health Metrics.
"The scholarly community is divided over a large meta-analysis that found that overweight ...