(Press-News.org) Targeted cancer therapies such as trastuzumab (Herceptin), gefitinib (Iressa) and erlotinib (Tarceva) could be used to treat a wider range of cancers than previously thought, according to new research presented today (Wednesday) at the 22nd EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Berlin.
Scientists in the USA have studied 20 genes that are targeted by existing therapies and found that there are significant changes to these genes in a broad range of patients' tumours, including many for which these drugs are not being used at present. The results suggest that these therapies, which have already been deemed safe and effective by regulatory agencies, may have additional opportunities to benefit cancer patients.
However, Dr Daniel Rhodes, chief executive officer and co-founder of Scientific Applications at Compendia Bioscience (Ann Arbor, Michigan, USA), told the meeting: "While there may be immediate opportunities to use these new findings to treat patients with few remaining treatment options, broader application of the findings will require large-scale clinical trials to investigate if such personalised medicine could translate into real benefit over existing standard of care."
Genes can play a role in causing cancer in a number of ways, including via mutations that cause them to function incorrectly or via DNA amplifications whereby there are multiple additional copies of a gene. Normal cells (apart from germ cells) typically have two copies of each gene, but cancer cells often create additional copies of specific cancer-causing genes. For the current study, Dr Rhodes and his colleagues were looking for tumours in which there were five or more copies of a particular gene.
Targeted therapies are aimed at blocking the action of the mutated or amplified genes, "but they are often used without detailed knowledge of the genetic makeup of a patient's tumour," said Dr Rhodes. "The aim of personalised medicine is to understand an individual patient's cancer and select therapies that are most likely to benefit the patient; however, today most patients do not undergo any genetic testing of their tumours. We sought to understand the opportunity to use DNA amplifications, one type of cancer-causing mutation, to select existing targeted therapies that would be most likely to benefit cancer patients.
"We studied 22 genes that are targeted by therapies, either approved or in clinical trials, and found that the targets often show high-level amplifications in small subsets of patients and that particular cancer types show more frequent amplifications, for instance cancers of the brain (21.4% of cases) and breast (23.2% of cases). Our work suggests that some cancer patients should be tested for DNA amplifications and that small subsets of cancer patients harbour specific DNA amplifications that might indicate potential benefit from an existing therapy. We caution that we have not demonstrated that the targeted therapies will benefit all cancer patients with a DNA amplification, but we suspect, given past clinical trials and experimental studies, that some DNA amplifications will be predictive of therapeutic benefit for some patients."
The researchers studied the genes in tumours from 4,086 patients and found 592 significant DNA amplifications in 438 cancer patients, suggesting that 5-10% of cancer patients might be suitable for treatment with an existing targeted therapy. In addition to brain and breast cancers, they found significant amplifications in cancer of the colon (5.8%), lung (5.8%), ovary (4%) and pancreas (3%). They were rare or non-existent in liver cancer, leukaemia and myeloma. As might be expected, amplifications of the HER2 gene were found in breast cancer (13.7% frequency), at which the drug trastuzumab is targeted, but it was also found in small subsets of colorectal (1.3%) and lung (0.9%) cancer patients. There were examples of other gene amplifications occurring in cancers other than those for which targeted therapies had been tested and approved.
The researchers also checked whether the amplifications were ones that were responsible for driving the growth of the various cancers. "We cannot be sure that in each case the DNA amplifications we studied were 'drivers' of cancer, but we can look for clues that the genes are likely to be the drivers," explained Dr Rhodes. "If the amplifications involved small, focal regions of the genome that included only the target or only a few genes, then it is more likely that the target gene was a 'driver'. Also, if the target gene was more frequently amplified and amplified at higher levels than neighbour genes, then again it is more likely that the target gene is the 'driver'. Thus, we examined the regions of amplification around the target genes and the most commonly amplified genes in the region and in almost all cases, our target gene under study was the most commonly and most highly amplified gene in the region."
Dr Rhodes concluded: "We envision our work motivating a DNA amplification-guided clinical trial that would test advanced cancer patients for DNA amplification of all relevant targets and then partition patients into treatment arms based on their particular amplification. Such an effort would be costly and could require hundreds of patients; however, our study provides the basis and the frequencies of amplifications that could be expected. We hope that this work will motivate clinicians to consider such an approach."
###
Abstract no: 34. Oral presentation in plenary session 2, Rooms A-C, 14.45-16.15 hrs CET, Wednesday 17 November.
Notes:
[1] EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].
[2] This study was conducted and funded by Compendia Bioscience.
END
Researchers have shown that point mutations – mis-spellings in a single letter of genetic code – that drive the onset and growth of cancer cells can be detected successfully in advanced ovarian cancer using a technique called OncoMap. The finding opens the way for personalised medicine in which every patient could have their tumour screened, specific mutations identified, and the appropriate drug chosen to target the mutation and halt the growth of their cancer.
Using mass spectrometry for identifying the genetic make-up of cancer cells, OncoMap can determine the point ...
Scientists believe they may have found a new target for treating triple negative breast cancer – one of the more difficult breast cancers to treat successfully and for which there is no targeted therapy at present.
Triple negative breast cancer (TNBC) is a cancer that does not express receptors for oestrogen (ER), progesterone (PR) or the human epidermal growth factor (HER2). It tends to be more aggressive, occurs more often in younger women, and is difficult to treat successfully as it lacks the receptors that currently available targeted therapies such as tamoxifen ...
Washington, D.C. (November 16, 2010) -- For more than 250 years, researchers have known that under certain conditions vapor bubbles can form in fluids moving swiftly over a surface. These bubbles soon collapse with such great force that they can poke holes in steel and damage objects such as ship propellers, turbine blades, nozzles and pump impellers.
Scientists have conducted extensive research for decades to try to understand this phenomenon -- called cavitation. But most experiments to date have been related to open-water objects like ship propellers.
Now a group ...
Washington, D.C. (November 16, 2010) -- While our direct knowledge of black holes in the universe is limited to what we can observe from thousands or millions of light years away, a team of Chinese physicists has proposed a simple way to design an artificial electromagnetic (EM) black hole in the laboratory.
In the Journal of Applied Physics, Huanyang Chen at Soochow University and colleagues have presented a design of an artificial EM black hole designed using five types of composite isotropic materials, layered so that their transverse magnetic modes capture EM waves ...
Washington, D.C. (November 16, 2010) -- In a move that holds great significance for the semiconductor industry, a team of researchers has created an alternative to conventional logic gates, demonstrated them in silicon, and dubbed them "chaogates." The researchers present their findings in Chaos, a journal published by the American Institute of Physics.
Simply put, they used chaotic patterns to encode and manipulate inputs to produce a desired output. They selected desired patterns from the infinite variety offered by a chaotic system. A subset of these patterns was ...
CINCINNATI—Researchers at the University of Cincinnati (UC) have found that fat around the outside of arteries may lead to the development of cardiovascular disease and could be linked to its onset in individuals with diabetes.
David Manka, PhD, a researcher in the division of cardiovascular diseases, and his team found that this fat—known as perivascular adipose tissue—could possibly lead to the formation of fatty buildup inside of arteries and could cause existing buildup to break loose, leading to stroke or heart attack.
These findings are being presented at the ...
The increase in the legal age of sexual consent from 14 to 16 years in 2008 may not be protecting those at greatest risk, according to researchers who have analyzed British Columbia population-based data and recommend additional strategies to safeguard vulnerable children and teens.
In the first study of its kind in Canada, researchers from the University of British Columbia and Simon Fraser University tested the government's reasons for changing the law. Their findings are published in the current issue the Canadian Journal of Human Sexuality.
According to the study's ...
Risø Energy Report 9 lists a wide range of energy technologies in the market with low or no emissions of greenhouse gases, describing how several of these will be made commercially available in the next decades.
However, it is not possible to make the world's energy supply CO2-free as cheaply as possible, using only technology development in the current energy systems. There must be room for technological leaps and there is a need for an integrated process to optimise the entire energy system, from energy production, through transformation into energy carriers, to energy ...
Long-nosed Cape rock elephant-shrews are fond of sticky treats, according to Dr. Petra Wester from the University of Stellenbosch in South Africa. Her investigations show for the first time that the elephant-shrew, Elephantulus edwardii, licks the nectar of the flowers and pollinates the Pagoda lily. Her results are published in Springer's journal, Naturwissenschaften – The Science of Nature.
Dr. Wester studied the behavior of the animals in the northern Cederberg area of South Africa, where Pagoda lily plants, Whiteheadia bifolia (Hyacinthaceae), are found in shady rock ...
CINCINNATI—University of Cincinnati (UC) researchers have discovered a new protein that could be cardioprotective during heart attack, potentially leading to more targeted treatments for patients at risk.
These findings are being presented at the American Heart Association's (AHA) Scientific Sessions in Chicago Nov. 16.
Researchers in the department of pharmacology and cell biophysics, led by Chi Keung Lam, a PhD student, and Wen Zhao, PhD, under the direction of Litsa Kranias, PhD, AHA distinguished scientist and chair of the department, found that HAX-1, an anti-cell ...