(Press-News.org) A newly identified genetic disorder associated with degeneration of the central and peripheral nervous systems in humans, along with the genetic cause, is reported in the April 24, 2014 issue of Cell.
The findings were generated by two independent but collaborative scientific teams, one based primarily at Baylor College of Medicine and the Austrian Academy of Sciences, the other at the University of California, San Diego School of Medicine, the Academic Medical Center (AMC) in the Netherlands and the Yale University School of Medicine.
By performing DNA sequencing of more than 4,000 families affected by neurological problems, the two research teams independently discovered that a disease marked by reduced brain size and sensory and motor defects is caused by a mutation in a gene called CLP1, which is known to regulate tRNA metabolism in cells. Insights into this rare disorder, the researchers said, may have important implications for the future treatment of more common neurological conditions.
"What we found particularly striking, when considering the two studies together, is that this is not a condition that we would have been able to separate from other similar disorders based purely on patient symptoms or clinical features", said Joseph G. Gleeson, MD, Howard Hughes Medical Institute investigator, professor in the UC San Diego departments of Neurosciences and Pediatrics and at Rady Children's Hospital-San Diego, a research affiliate of UC San Diego. "Once we had the gene spotted in these total of seven families, then we could see the common features. It is the opposite way that doctors have defined diseases, but represents a transformation in the way that medicine is practiced."
Each child tested was affected by undiagnosed neurological problems. All of the children were discovered to carry a mutation in the CLP1 gene and displayed the same symptoms, such as brain malformations, intellectual disabilities, seizures and sensory and motor defects. A similar pattern emerged in both studies, one led by Gleeson, with Murat Gunel, MD, of the Yale University School of Medicine and Frank Baas, PhD, of the Academic Medical Center in the Netherlands, and the other by Josef Penninger and Javier Martinez of the Austrian Academy of Sciences, teamed with James R. Lupski, MD, PhD, of the Baylor College of Medicine.
"Knowing fundamental pathways that regulate the degeneration of neurons should allow us to define new pathways that, when modulated, might help us to protect motor neurons from dying, such as in Lou Gehrig's disease," said Penninger, scientific director of the Institute of Molecular Biotechnology of the Austrian Academy of Sciences.
The CLP1 protein plays an important role in generating mature, functional molecules called transfer RNAs (tRNAs), which shuttle amino acids to cellular subunits called ribosomes for assembly into proteins. Mutations affecting molecules involved in producing tRNAs have been implicated in human neurological disorders, such as pontocerebellar hypoplasia (PCH), a currently incurable neurodegenerative disease affecting children. Although CLP1 mutations have been linked to neuronal death and motor defects in mice, the role of CLP1 in human disease was not known until now.
These scientists performed DNA sequencing on children with neurological problems. Seven out of the more than 4,000 families studied shared an identical CLP1 mutation, which was associated with motor defects, speech impairments, seizures, brain atrophy and neuronal death.
Bass at the AMC said the neurological condition represents a new form of PCH. "Identification of yet another genetic cause for this neurodegenerative disorder will allow for better genetic testing and counseling to families with an affected child," he said.
In a published paper last year, Gleeson and colleagues identified a different gene mutation for a particularly severe form of PCH, and reported early evidence that a nutritional supplement might one day be able to prevent or reverse the condition.
INFORMATION:
Co-authors of the UC San Diego/AMC/Yale paper are Ashleigh E. Schaffer, Eric Scott, Nicole G. Coufal, Jennifer L. Silhavy, Rasim Ozgur Rosti, Mostafa Abdellateef, Vincent Cantagrel and Na Cai, Neurogenetics Laboratory, Howard Hughes Medical Institute, UCSD Department of Neurosciences; Veerle R.C. Eggens, Paul R. Kasher, J. Leonie Casemier and Marian A. Weterman, Academic Medical Center, Amsterdam, the Netherlands; Ahmet Okay Caglayan, Katsuhito Yasuno, Caner Caglar and Kaya Bilguvar, Yale University School of Medicine; Miriam S. Reuter, Christiane Zweier
and Andre Reis, Universitat Erlangen-Nurnberg, Germany; Yuanchao Xue and Xiang-Dong Fu, UCSD Department of Cellular and Molecular Medicine; Hulya Kayserili, Umut Altunoglu and N. Bilge Satkin, Istanbul University; Fesih Akta, Diyarbakir State Hospital; Beyhan Tuysuz and Cengiz Yalcinkaya, Cerrahpasa Medical School, Istanbul University; Huseyin Caksen, Necmettin Erbakin University; Christopher Trotta, PTC Therapeutics, Stacy Gabriel, Broad Institute of Harvard and Massachusetts Institute of Technology.
Funding for this research came, in part, from the National Institutes of Health (grants P01HD070494, R01NS048453, P30NS047101, U54HG003067, GM049369, U54HG006504 and RC2NS070477) and the Gregory M. Kiez and Mehmet Kutman Foundation.
Researchers discover new genetic brain disorder in humans
2014-04-24
ELSE PRESS RELEASES FROM THIS DATE:
Scientists reprogram blood cells into blood stem cells in mice
2014-04-24
BOSTON (April 24, 2014)—Researchers at Boston Children's Hospital have reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells (HSCs), using a cocktail of eight genetic switches called transcription factors. The reprogrammed cells, which the researchers have dubbed induced HSCs (iHSCs), have the functional hallmarks of HSCs, are able to self-renew like HSCs, and can give rise to all of the cellular components of the blood like HSCs.
The findings mark a significant step toward one of the most sought-after goals of regenerative medicine: the ...
To mark territory or not to mark territory: Breaking the pheromone code
2014-04-24
LA JOLLA, CA— April 24, 2014 —A team led by scientists at The Scripps Research Institute (TSRI) has deciphered the surprisingly versatile code by which chemical cues help trigger some of the most basic behaviors in mice.
The findings shed light on the evolution of mammalian behaviors—which include human behaviors—and their underlying brain mechanisms.
"How does an individual respond differently to the environment based on experience? How does it distinguish itself from others? These are some of the fundamental questions that a study like this one helps us address," ...
Genetic legacy from the Ottoman Empire: Single mutation causes rare brain disorder
2014-04-24
An international team of researchers have identified a previously unknown neurodegenerative disorder and discovered it is caused by a single mutation in one individual born during the Ottoman Empire in Turkey about 16 generations ago.
The genetic cause of the rare disorder was discovered during a massive analysis of the individual genomes of thousands of Turkish children suffering from neurological disorders.
"The more we learn about basic mechanisms behind rare forms of neuro-degeneration, the more novel insights we can gain into more common diseases such as Alzheimer's ...
Oops! Researchers find neural signature for mistake correction
2014-04-24
Culminating an 8 year search, scientists at the RIKEN-MIT Center for Neural Circuit Genetics captured an elusive brain signal underlying memory transfer and, in doing so, pinpointed the first neural circuit for "oops" ? the precise moment when one becomes consciously aware of a self-made mistake and takes corrective action.
The findings, published in Cell, verified a 20 year old hypothesis on how brain areas communicate. In recent years, researchers have been pursuing a class of ephemeral brain signals called gamma oscillations, millisecond scale bursts of synchronized ...
Large-scale identification and analysis of suppressive drug interactions
2014-04-24
TORONTO – Baker's yeast is giving scientists a better understanding of drug interactions, which are a major cause of hospitalization and illness world-wide.
When two or more medications are taken at the same time, one can suppress or enhance the effectiveness of the other. Similarly, one drug may magnify the toxicity of another. These types of interactions are a major cause of illness and hospitalization. However, there are severe practical limits on the practical scope of drug studies in humans. Limits come in part from ethics and in part from the staggering expense. ...
Skin layer grown from human stem cells could replace animals in drug and cosmetics testing
2014-04-24
An international team led by King's College London and the San Francisco Veteran Affairs Medical Center (SFVAMC) has developed the first lab-grown epidermis – the outermost skin layer - with a functional permeability barrier akin to real skin. The new epidermis, grown from human pluripotent stem cells, offers a cost-effective alternative lab model for testing drugs and cosmetics, and could also help to develop new therapies for rare and common skin disorders.
The epidermis, the outermost layer of human skin, forms a protective interface between the body and its external ...
Scripps Research Institute scientists find new point of attack on HIV for vaccine development
2014-04-24
LA JOLLA, CA— April 24, 2014 —A team led by scientists at The Scripps Research Institute (TSRI) working with the International AIDS Vaccine Initiative (IAVI) has discovered a new vulnerable site on the HIV virus. The newly identified site can be attacked by human antibodies in a way that neutralizes the infectivity of a wide variety of HIV strains.
"HIV has very few known sites of vulnerability, but in this work we've described a new one, and we expect it will be useful in developing a vaccine," said Dennis R. Burton, professor in TSRI's Department of Immunology and Microbial ...
Three-banded panther worm debuts as a new model in the study of regeneration
2014-04-24
CAMBRIDGE, Mass. (April 24, 2014) – Closely resembling plump grains of wild rice set in motion, the three-banded panther worms swimming in disposable containers in Whitehead Institute Member Peter Reddien's lab hardly seem like the next big thing in regeneration. And yet, these little-studied organisms possess the ability to regenerate any part of their bodies and are amenable to molecular studies in the lab, making them a valuable addition to a field keen on understanding how mechanisms controlling regeneration have evolved over millennia and how they might be activated ...
Engineered E. coli produces high levels of D-ribose as described in Industrial Biotechnology journal
2014-04-24
New Rochelle, NY, April 24, 2014—D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia coli to increase the bacteria's ability to produce D-ribose is a critical step toward achieving more efficient industrial-scale production of this valuable chemical, as described in an article in Industrial Biotechnology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available on the Industrial Biotechnology ...
Oxygen diminishes the heart's ability to regenerate, researchers discover
2014-04-24
DALLAS – April 24, 2014 – Scientific research at UT Southwestern Medical Center previously discovered that the newborn animal heart can heal itself completely, whereas the adult heart lacks this ability. New research by the same team today has revealed why the heart loses its incredible regenerative capability in adulthood, and the answer is quite simple – oxygen.
Yes, oxygen. It is well-known that a major function of the heart is to circulate oxygen-rich blood throughout the body. But at the same time, oxygen is a highly reactive, nonmetallic element and oxidizing agent ...