(Press-News.org) Using a flash of light, scientists have inactivated and then reactivated a memory in genetically engineered rats. The study, supported by the National Institutes of Health, is the first cause-and-effect evidence that strengthened connections between neurons are the stuff of memory.
"Our results add to mounting evidence that the brain represents a memory by forming assemblies of neurons with strengthened connections, or synapses, explained Roberto Malinow, M.D., Ph.D., of the University of California, San Diego (UCSD), a grantee of the NIH's National Institute of Mental Health (NIMH). "Further, the findings suggest that weakening synapses likely disassembles neuronal assemblies to inactivate a memory."
Malinow, Roger Tsien, Ph.D., a grantee of NIH's National Institute on Neurological Disorders and Stroke (NINDS), and other UCSD colleagues, report June 1, 2014 in the journal Nature on their findings using cutting edge optical/gene-based technology.
"Beyond potential applications in disorders of memory deficiency, such as dementia, this improved understanding of how memory works may hold clues to taking control of runaway emotional memories in mental illnesses, such as post-traumatic stress disorder," said NIMH director Thomas R. Insel, M.D.
Neuroscientists have long suspected that strengthened connections between neurons – called long-term potentiation (LTP) – underlies memory formation, But proof had remained elusive, until now.
The Malinow team proved it by detecting LTP when forming a memory, removing the memory with a process known to reverse LTP, and then bringing the memory back via LTP – all by modifying the strength of synapses in a memory circuit.
To gain the precise control needed to show such a cause-and-effect relationship, Malinow's team turned to one of neuroscience's most powerful new tools: optogenetics. It adapts the same cellular machinery that allows primitive organisms like algae to be controlled by light from the sun to control specific brain circuit components instantly with a laser – even in a behaving animal.
In conventional rodent fear conditioning experiments, a tone is paired with a foot shock to induce a fear memory of the tone. If the memory is active, the animal freezes and shows reduced reward-seeking behaviors when it hears the tone. Instead of the tone, Malinow's team paired the shock with direct optogenetic stimulation, lighting up a specific group of neurons in a known auditory fear memory circuit.
Such precise targeting wasn't possible with earlier electrical stimulation techniques. "It's just a jungle in the brain – too many nerve cells coming through in any one place," explained Malinow.
By varying the pattern of optogenetic stimulation, the researchers were able to strengthen connections between neurons in the circuit by promoting LTP or weaken the connections by promoting a countervailing process called long-term depression (LTD). This made it possible to readily form a fear memory, remove it, and then bring it back.
Moreover, upon closer optogenetic probing in postmortem brains, the targeted circuit neurons showed telltale changes in sensitivity of brain chemical messenger systems. These changes confirmed the hypothesized role of strengthening and weakening of synaptic connections in the switching on-and-off of the memory.
"We have shown that the damaging products that build up in the brains of Alzheimer's disease patients can weaken synapses in the same way that we weakened synapses to remove a memory," said Malinow. "So this line of research could suggest ways to intervene in the process."
"In addition to eliminating any doubt about a link between LTP/LTD with memories, this work highlights the staggering potential of precision targeting and circuit manipulation for alleviating maladaptive memories," said project officer Chiiko Asanuma,Ph.D., of the NIMH Division of Neuroscience and Basic Behavioral Science.
"This work provides a nice demonstration of how the field of neuroscience is being transformed by the types of technologies that are at the heart of President Obama's BRAIN Initiative," said Edmund Talley, Ph.D., program director at the NINDS.
INFORMATION: END
Shining a light on memory
It's all about strengthened connections between neurons, NIH-funded study confirms
2014-06-01
ELSE PRESS RELEASES FROM THIS DATE:
Study identifies new genetic cause of male reproductive birth defects
2014-06-01
HOUSTON – (June 1, 2014) – Baylor College of Medicine scientists defined a previously unrecognized genetic cause for two types of birth defects found in newborn boys, described in a report published today in the journal Nature Medicine.
"Cryptorchidism and hypospadias are among the most common birth defects but the causes are usually unknown," said Dr. Dolores Lamb, director of the Center for Reproductive Medicine at Baylor, professor and vice chair for research of urology and molecular and cellular biology at Baylor and lead author of the report.
Cryptorchidism is ...
'Quadrapeutics' works in preclinical study of hard-to-treat tumors
2014-06-01
HOUSTON -- (June 1, 2014) -- The first preclinical study of a new Rice University-developed anti-cancer technology found that a novel combination of existing clinical treatments can instantaneously detect and kill only cancer cells -- often by blowing them apart -- without harming surrounding normal organs. The research, which is available online this week Nature Medicine, reports that Rice's "quadrapeutics" technology was 17 times more efficient than conventional chemoradiation therapy against aggressive, drug-resistant head and neck tumors.
The work was conducted by ...
CSIC develops a software able to identify and track an specific individual within a group
2014-06-01
Researchers from the Spanish National Research Council (CSIC) have developed a software based on the discovery of some algorithms that enable the identification of each individual, therefore allowing their tracking within the group. Thus, the door opens to the quantitative study of the rules of social interaction for many species. The work has been published in the Nature Methods journal.
Animals that move in groups make decisions considering what other members of their community do. To find out the rules of these interactions, researchers record monitoring videos through ...
Graphene's multi-colored butterflies
2014-06-01
Writing in Nature Physics, a large international team led by Dr Artem Mishchenko and Sir Andre Geim from The University of Manchester shows that the electronic properties of graphene change dramatically if graphene is placed on top of boron nitride, also known as 'white graphite'.
One of the major challenges for using graphene in electronics applications is the absence of a band gap, which basically means that graphene's electrical conductivity cannot be switched off completely. Whatever researchers tried to do with the material so far, it remained highly electrically ...
Paired enzyme action in yeast reveals backup system for DNA repair
2014-06-01
The combined action of two enzymes, Srs2 and Exo1, prevents and repairs common genetic mutations in growing yeast cells, according to a new study led by scientists at NYU Langone Medical Center.
Because such mechanisms are generally conserved throughout evolution, at least in part, researchers say the findings suggest that a similar DNA repair kit may exist in humans and could serve as a target for controlling some cancers and treating a rare, enzyme-linked genetic disorder called Aicardi-Goutieres syndrome. The syndrome, an often fatal neurological condition, is found ...
Pitt team first to detect exciton in metal
2014-06-01
PITTSBURGH—University of Pittsburgh researchers have become the first to detect a fundamental particle of light-matter interaction in metals, the exciton. The team will publish its work online June 1 in Nature Physics.
Mankind has used reflection of light from a metal mirror on a daily basis for millennia, but the quantum mechanical magic behind this familiar phenomenon is only now being uncovered.
Physicists describe physical phenomena in terms of interactions between fields and particles, says lead author Hrvoje Petek, Pitt's Richard King Mellon Professor in the Department ...
Subtle change in DNA, protein levels determines blond or brunette tresses, study finds
2014-06-01
STANFORD, Calif. — A molecule critical to stem cell function plays a major role in determining human hair color, according to a study from the Stanford University School of Medicine.
The study describes for the first time the molecular basis for one of our most noticeable traits. It also outlines how tiny DNA changes can reverberate through our genome in ways that may affect evolution, migration and even human history.
"We've been trying to track down the genetic and molecular basis of naturally occurring traits — such as hair and skin pigmentation — in fish and humans ...
International collaboration replicates amplification of cosmic magnetic fields
2014-06-01
VIDEO:
This video simulation shows how a laser that illuminates a small carbon rod launches a complex flow, consisting of supersonic shocks and turbulent flow. When the grid is present, turbulence...
Click here for more information.
Astrophysicists have established that cosmic turbulence could have amplified magnetic fields to the strengths observed in interstellar space.
"Magnetic fields are ubiquitous in the universe," said Don Lamb, the Robert A. Millikan Distinguished ...
Researchers discover hormone that controls supply of iron in red blood cell production
2014-06-01
A UCLA research team has discovered a new hormone called erythroferrone, which regulates the iron supply needed for red blood-cell production.
Iron is an essential functional component of hemoglobin, the molecule that transports oxygen throughout the body. Using a mouse model, researchers found that erythroferrone is made by red blood-cell progenitors in the bone marrow in order to match iron supply with the demands of red blood-cell production. Erythroferrone is greatly increased when red blood-cell production is stimulated, such as after bleeding or in response to anemia.
The ...
Leptin also influences brain cells that control appetite, Yale researchers find
2014-06-01
Twenty years after the hormone leptin was found to regulate metabolism, appetite, and weight through brain cells called neurons, Yale School of Medicine researchers have found that the hormone also acts on other types of cells to control appetite.
Published in the June 1 issue of Nature Neuroscience, the findings could lead to development of treatments for metabolic disorders such as obesity and diabetes.
"Up until now, the scientific community thought that leptin acts exclusively in neurons to modulate behavior and body weight," said senior author Tamas Horvath, the ...
LAST 30 PRESS RELEASES:
AI finds undiagnosed liver disease in early stages
The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski
Excessive screen time linked to early puberty and accelerated bone growth
First nationwide study discovers link between delayed puberty in boys and increased hospital visits
Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?
New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness
Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress
Mass General Brigham researchers find too much sitting hurts the heart
New study shows how salmonella tricks gut defenses to cause infection
Study challenges assumptions about how tuberculosis bacteria grow
NASA Goddard Lidar team receives Center Innovation Award for Advancements
Can AI improve plant-based meats?
How microbes create the most toxic form of mercury
‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources
A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings
Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania
Researchers uncover Achilles heel of antibiotic-resistant bacteria
Scientists uncover earliest evidence of fire use to manage Tasmanian landscape
Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire
Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies
Stress makes mice’s memories less specific
Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage
Resilience index needed to keep us within planet’s ‘safe operating space’
How stress is fundamentally changing our memories
Time in nature benefits children with mental health difficulties: study
In vitro model enables study of age-specific responses to COVID mRNA vaccines
Sitting too long can harm heart health, even for active people
International cancer organizations present collaborative work during oncology event in China
One or many? Exploring the population groups of the largest animal on Earth
ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation
[Press-News.org] Shining a light on memoryIt's all about strengthened connections between neurons, NIH-funded study confirms