(Press-News.org) WEST LAFAYETTE, Ind. —A Purdue University-led research team has figured out how to disable a part of the SARS virus responsible for hiding it from the immune system; a critical step in developing a vaccine against the deadly disease.
The findings also have potential applications in the creation of vaccines against other coronaviruses, including MERS, said Andrew Mesecar, who led the research.
"This is a first step toward creating a weakened and safe virus for use in an attenuated live vaccine," said Mesecar, Purdue's Walther Professor of Cancer Structural Biology and professor of biological sciences and chemistry. "This also could serve as a molecular roadmap for performing similar studies on other coronaviruses, like MERS, because this enzyme appears to be common to all viruses within this family."
Mesecar also is a part of a research team studying and creating potential treatment compounds for the Middle East respiratory syndrome coronavirus, or MERS, that recently arrived in the United States. There is currently no treatment or vaccine for the virus, which has an estimated fatality rate of 30 percent, according to the Centers for Disease Control and Prevention.
Because MERS and SARS are related, insight into one could provide a shortcut to finding a treatment or developing a vaccine for the other.
Mesecar and his team captured the molecular structure of a key SARS enzyme, papain-like protease, and revealed how it strips a host cell of the proteins ubiquitin and ISG15, which are involved in triggering an immune response.
A paper detailing the National Institutes of Health and National Institue of Allergy and Infectious Diseases-funded work was published in PLOS Pathogens on May 22 and is available online.
"With most viruses, when a cell is infected it sends out an alarm triggering an immune response that fights the infection, but successful viruses are able to trick the immune system," Mesecar said. "By clipping off these two proteins, SARS short circuits the host cell's signaling pathways and prevents it from alerting the immune system to its presence. By removing these proteins, the enzyme serves as a biological cloaking system for the SARS virus that allows it to live and replicate undetected."
The disruption in its natural signaling pathways also causes an infected cell to miscommunicate with the cells around it, which leads to a response that eventually kills those cells, he said.
"Some treatments prevent a virus from replicating and stop further infection, but that doesn't necessarily prevent a harmful reaction to the virus," Mesecar said. "Sometimes it is the confusion in cellular communication that makes a virus lethal."
The outbreak of SARS, severe acute respiratory syndrome, in 2003 led to hundreds of deaths and thousands of illnesses, and there is currently no treatment. The virus can be transmitted through coughing or sneezing, and the infection can quickly spread from person to person, according to the CDC. SARS spread through two dozen countries over a period of a few months before it was contained. A total of 8,098 people worldwide became ill and 774 died. There have been no reported cases of SARS since 2004.
In 2012 the National Select Agent Registry Program declared SARS virus a select agent, meaning it is considered to have the potential to pose a severe threat to public health and safety.
In addition to hiding the virus from the immune system, the SARS papain-like protease, or PLpro, enzyme also is responsible for snipping the viral polyprotein into individual proteins that are essential for viral replication. While some treatments are designed to prevent viral replication, researchers working on a vaccine must retain this function, he said.
"The goal in engineering a SARS virus that could be used as a vaccine is to create one that replicates in cells but is unable to fend off the body's immune response," Mesecar said. "We want enough viral particles to be generated to properly prime the immune sytem to fight off a true infection, but without the virus being able to cause illness in the vaccinated individual."
Mesecar and his team focused on uncovering parts of the SARS PLpro enzyme that would be involved in thwarting the immune response, but which could be altered without affecting viral replication, he said.
The team used X-ray crystallography to solve the three-dimensional structure of the SARS PLpro enzyme in complex with ubiquitin. This enabled them to see how it interatced with the protein and which amino acids are involved in linking the two together. They then used computer models and simulations to determine which amino acids are likely involved in binding ISG15. The researchers mutated the amino acids identified so that the SARS PLpro enzyme could no longer interact with the host cell proteins. The team then tested the mutatant enzyme to confirm that it could still perform its role in viral replication.
In addition to Mesecar, co-authors include Purdue postdoctoral researcher Yahira M. Baez-Santos; Kiira Ratia from the University of Illinois, Chicago; and Andrew Kilianski and Susan C. Baker from the Loyola University Chicago Stritch School of Medicine.
Mesecar and his team are currently applying their findings to the MERS virus. They have shown that the MERS virus PLpro enzyme also removes ISG15 and ubiquitin from host cell proteins, and were able to crystallize the MERS Plpro enzyme in complex with ubiquitn and ISG15, he said.
INFORMATION:
Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu
Source: Andrew Mesecar, 765-494-1924, amesecar@purdue.edu
Related websites:
CDC SARS webpage
CDC MERS webpage
Related news releases:
Purdue MERS experts working on way to block dangerous virus
Purdue researchers seek treatment for new MERS coronavirus
Purdue researcher invents molecule that stops SARS
ABSTRACT
Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease
Kiira Ratia, Andrew Kilianski, Yahira M. Baez-Santos, Susan C. Baker and Andrew Mesecar
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and interferon stimulated gene 15 (ISG15) specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro's higher affinity for K48-linked ubiquitin chains and ISG15 stems form a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a "ridge" region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catayze hydrolysis of mono-ubiquitin. However, a select number of thse mutatnts have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activiated B-cells (NFkB) signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGYlase activity in antagonism of the innate immune response.
Researchers shut down a SARS cloaking system; findings could lead to SARS, MERS vaccines
2014-06-03
ELSE PRESS RELEASES FROM THIS DATE:
Study finds coordinated approach improves quality of primary care
2014-06-03
NEW YORK (June 2, 2014) -- Primary care doctors practicing in a model of coordinated, team-based care that leverages health information technology are more likely to give patients recommended preventive screening and appropriate tests than physicians working in other settings, according to research published today in the Annals of Internal Medicine. The study comparing quality of care by physicians using a delivery model known as the patient-centered medical home (PCMH) to care from physicians in non-PCMH practices provides evidence that the previously unproven but popular ...
Progress on detecting glucose levels in saliva
2014-06-03
PROVIDENCE, R.I. [Brown University] — Researchers from Brown University have developed a new biochip sensor that can selectively measure concentrations of glucose in a complex solution similar to human saliva. The advance is an important step toward a device that would enable people with diabetes to test their glucose levels without drawing blood.
The new chip makes use of a series of specific chemical reactions combined with plasmonic interferometry, a means of detecting chemical signature of compounds using light. The device is sensitive enough to detect differences ...
Hubble unveils a colorful view of the universe
2014-06-03
Prior to this survey, astronomers were in a curious position. They knew a lot about star formation occurring in nearby galaxies thanks to UV telescope facilities such as NASA's Galex observatory, which operated from 2003 to 2013. And, thanks to Hubble's near-infrared and visible capability, they had also studied star birth in the most distant galaxies. We see these distant galaxies in their most primitive stages due to the vast amount of time it takes their light to reach us.
However, between 5 and 10 billion light-years away from us -- corresponding to a time period ...
Story tips from the Department of Energy's Oak Ridge National Laboratory, June 2014
2014-06-03
BIOMETRICS – The eyes have it . . .
By discovering and quantifying the "limbus effect," Oak Ridge National Laboratory researchers have advanced the state of the art for human iris recognition systems. While the iris is a proven and reliable biometric for verification or identification, non-ideal images -- such as those captured off axis -- are problematic. Reasons include cornea refraction and the limbus effect, causing iris recognition performance to decrease and in many cases fail entirely. Now, using an anatomically accurate human eye model and some slick math, a ...
Experts recommend blood, urine testing to diagnose rare adrenal tumors
2014-06-03
Washington, DC—The Endocrine Society today issued a Clinical Practice Guideline (CPG) for the diagnosis and treatment of two types of rare adrenal tumors – pheochromocytomas and paragangliomas – that can raise the risk of cardiovascular disease and even death if left untreated.
The CPG, entitled "Pheochromocytoma and Paraganglioma: An Endocrine Society Clinical Practice Guideline," appeared in the June 2014 issue of the Journal of Clinical Endocrinology and Metabolism (JCEM), a publication of the Endocrine Society.
Pheochromocytomas are rare, usually noncancerous tumors ...
UGA ecologists provide close-up of coral bleaching event
2014-06-03
Athens, Ga. – New research by University of Georgia ecologists sheds light on exactly what happens to coral during periods of excessively high water temperatures. Their study, published in the journal Limnology and Oceanography, documents a coral bleaching event in the Caribbean in minute detail and sheds light on how it changed a coral's community of algae—a change that could have long-term consequences for coral health, as bleaching is predicted to occur more frequently in the future.
Millions of people around the world depend on coral reefs and the services they provide. ...
Moffitt researchers develop process to help personalize treatment for lung cancer patients
2014-06-03
TAMPA, Fla. (June 3, 2014) – Moffitt Cancer Center researchers, in collaboration with the Lung Cancer Mutation Consortium, have developed a process to analyze mutated genes in lung adenocarcinoma to help better select personalized treatment options for patients. Adenocarcinoma is the most common type of lung cancer in the United States with approximately 130,000 people diagnosed each year.
The study, published in the May 21 issue of The Journal of the American Medical Association, investigated 10 highly mutated and altered genes that contribute to cancer progression, ...
How long is too long to wait for groundbreaking aortic valve replacement surgery?
2014-06-03
Philadelphia, PA, June 3, 2014 – Severe aortic stenosis (AS) has a grave prognosis with 25-50% of patients dying within a year once symptoms develop. Transcatheter aortic valve replacement (TAVR) represents a paradigm shift in the therapeutic options for these patients. Because of cost and availability issues, there are often waiting times for this procedure. Investigators have found that even modest increases in wait times have a substantial impact on the effectiveness of TAVR in individuals who need it the most: otherwise inoperable patients and high-risk surgical candidates. ...
Stress hormone receptors localized in sweet taste cells
2014-06-03
PHILADELPHIA (June 3, 2014) – According to new research from the Monell Center, receptors for stress-activated hormones have been localized in oral taste cells responsible for detection of sweet, umami, and bitter. The findings suggest that these hormones, known as glucocorticoids, may act directly on taste receptor cells under conditions of stress to affect how these cells respond to sugars and certain other taste stimuli.
"Sweet taste may be particularly affected by stress," said lead author M. Rockwell Parker, PhD, a chemical ecologist at Monell. "Our results may provide ...
'Cool' factor separates e-cigarettes from nicotine inhalers
2014-06-03
Why are e-cigarettes so popular among Americans who want to quit smoking, even though so little is known about their safety or effectiveness? The answer lies in their marketing – they are simply "cooler" than nicotine inhalers. So says Michael Steinberg of the Rutgers Robert Wood Johnson Medical School in the USA, leader of a pilot study¹ about the perception and use of these nicotine delivery devices. The findings appear in the Journal of General Internal Medicine², published by Springer.
Nicotine inhalers work when nicotine vapor is breathed in and absorbed through ...