(Press-News.org) ANN ARBOR – Biophysics researchers at the University of Michigan have used short pulses of light to peer into the mechanics of photosynthesis and illuminate the role that molecule vibrations play in the energy conversion process that powers life on our planet.
The findings could potentially help engineers make more efficient solar cells and energy storage systems. They also inject new evidence into an ongoing "quantum biology" debate over exactly how photosynthesis manages to be so efficient.
Through photosynthesis, plants and some bacteria turn sunlight, water and carbon dioxide into food for themselves and oxygen for animals to breathe. It's perhaps the most important biochemical process on Earth and scientists don't yet fully understand how it works.
The U-M findings identify specific molecular vibrations that help enable charge separation – the process of kicking electrons free from atoms in the initial steps of photosynthesis that ultimately converts solar energy into chemical energy for plants to grow and thrive.
"Both biological and artificial photosynthetic systems take absorbed light and convert it to charge separation. In the case of natural photosynthesis, that charge separation leads to biochemical energy. In artificial systems, we want to take that charge separation and use it to generate electricity or some other useable energy source such as biofuels," said Jennifer Ogilvie, an associate professor of physics and biophysics at the University of Michigan and lead author of a paper on the findings that will be published July 13 in Nature Chemistry.
It takes about one-third of a second to blink your eye. Charge separation happens in roughly one-hundredth of a billionth of that amount of time. Ogilvie and her research group developed an ultrafast laser pulse experiment that can match the speed of these reactions. By using carefully timed sequences of ultrashort laser pulses, Ogilvie and coworkers were able to initiate photosynthesis and then take snapshots of the process in real time.
The researchers worked with Charles Yocum, U-M professor emeritus in the Department of Molecular, Cellular and Developmental Biology and the Department of Chemistry, both in the College of Literature, Science, and the Arts to extract what's called the photosystem II reaction centers from the leaves. Located in the chloroplasts of plant cells, photosystem II is the group of proteins and pigments that does the photosynthetic heavy lifting. It's also the only known natural enzyme that uses solar energy to split water into hydrogen and oxygen.
To get a sample, the researchers bought a bag of spinach leaves from a grocery store. "We removed the stems and veins, put it in the blender and then performed several extraction steps to gently remove the protein complexes from the membrane while keeping them intact.
"This particular system is of great interest to people because the charge separation process happens extremely efficiently," she said. "In artificial materials, we have lots of great light absorbers and systems that can create charge separation, but it's hard to maintain that separation long enough to extract it to do useful work. In the photosystem II reaction center, that problem is nicely solved."
The researchers used their unique spectroscopic approach to excite the photosystem II complexes and examine the signals that were produced. In this way, they gained insights about the pathways that energy and charge take in the leaves.
"We can carefully track what's happening," Ogilvie said. "We can look at where the energy is transferring and when the charge separation has occurred."
The spectroscopic signals they recorded contained long-lasting echoes, of sorts, that revealed specific vibrational motions that occurred during charge separation.
"What we've found is that when the gaps in energy level are close to vibrational frequencies, you can have enhanced charge separation," Ogilvie said. "It's a bit like a bucket-brigade: how much water you transport down the line of people depends on each person getting the right timing and the right motion to maximize the throughput. Our experiments have told us about the important timing and motions that are used to separate charge in the photosystem II reaction center."
She envisions using this information to reverse engineer the process - to design materials that have appropriate vibrational and electronic structure to mimic this highly efficient charge separation process.
INFORMATION:
The paper is titled "Vibronic Coherence in Oxygenic Photosynthesis," scheduled for publication online on July 13 in Nature Chemistry. Other co-authors are from Vilnius University and the Center for Physical Sciences and Technology, both in Vilnius, Lithuania. The work is funded by the U.S. Department of Energy, the National Science Foundation and the U-M Center for Solar and Thermal Energy Conversion, as well as the Research Council of Lithuania.
Deep within spinach leaves, vibrations enhance efficiency of photosynthesis
2014-07-13
ELSE PRESS RELEASES FROM THIS DATE:
Researchers discover boron 'buckyball'
2014-07-13
PROVIDENCE, R.I. (Brown University) -- The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.
Researchers from Brown University, Shanxi University and Tsinghua University in China have shown that a cluster of 40 boron atoms forms a hollow molecular cage similar to a carbon buckyball. It's the first experimental evidence that a boron cage structure—previously only a matter of speculation—does indeed exist.
"This is the first time that ...
Study finds cause of mysterious food allergy, suggests new treatment strategy
2014-07-13
New research in Nature Genetics identifies a novel genetic and molecular pathway in the esophagus that causes eosinophillic esophagitis (EoE), opening up potential new therapeutic strategies for an enigmatic and hard-to-treat food allergy.
EoE is a chronic inflammatory disorder of the esophagus. The condition is triggered by allergic hypersensitivity to certain foods and an over-accumulation in the esophagus of white blood cells called eosinophils (part of the body's immune system). EoE can cause a variety of gastrointestinal complaints including reflux-like symptoms, ...
Antibody halts cancer-related wasting condition
2014-07-13
BOSTON – New research raises the prospect of more effective treatments for cachexia, a profound wasting of fat and muscle occurring in about half of all cancer patients, raising their risk of death, according to scientists from Dana-Farber Cancer Institute.
Many strategies have been tried to reverse the condition, which may cause such frailty that patients can't endure potentially life-saving treatments, but none have had great success.
Scientists reporting in the July 13 advanced online edition of Nature, led by Bruce Spiegelman, PhD, demonstrated that in mice bearing ...
Stanford researchers invent nanotech microchip to diagnose type-1 diabetes
2014-07-13
An inexpensive, portable, microchip-based test for diagnosing type-1 diabetes could improve patient care worldwide and help researchers better understand the disease, according to the device's inventors at the Stanford University School of Medicine.
Described in a paper to be published online July 13 in Nature Medicine, the test employs nanotechnology to detect type-1 diabetes outside hospital settings. The handheld microchips distinguish between the two main forms of diabetes mellitus, which are both characterized by high blood-sugar levels but have different causes ...
Study of noninvasive retinal imaging device presented at Alzheimer's conference
2014-07-13
LOS ANGELES – A noninvasive optical imaging device developed at Cedars-Sinai can provide early detection of changes that later occur in the brain and are a classic sign of Alzheimer's disease, according to preliminary results from investigators conducting a clinical trial in Australia.
The researchers will present their findings July 15 in an oral presentation at the Alzheimer's Association International Conference 2014 in Copenhagen, Denmark. They also were invited by conference organizers to participate in a "breaking news" news conference beginning at 7:30 a.m. Sunday, ...
Smell and eye tests show potential to detect Alzheimer's early
2014-07-13
COPENHAGEN, July 13, 2014 – A decreased ability to identify odors might indicate the development of cognitive impairment and Alzheimer's disease, while examinations of the eye could indicate the build-up of beta-amyloid, a protein associated with Alzheimer's, in the brain, according to the results of four research trials reported today at the Alzheimer's Association International Conference® 2014 (AAIC® 2014) in Copenhagen.
In two of the studies, the decreased ability to identify odors was significantly associated with loss of brain cell function and progression to Alzheimer's ...
Brain activity in sex addiction mirrors that of drug addiction
2014-07-11
Pornography triggers brain activity in people with compulsive sexual behaviour – known commonly as sex addiction – similar to that triggered by drugs in the brains of drug addicts, according to a University of Cambridge study published in the journal PLOS ONE. However, the researchers caution that this does not necessarily mean that pornography itself is addictive.
Although precise estimates are unknown, previous studies have suggested that as many as one in 25 adults is affected by compulsive sexual behaviour, an obsession with sexual thoughts, feelings or behaviour ...
When good gut bacteria get sick
2014-07-11
Boston, MA – Being sick due to an infection can make us feel lousy. But what must the ecosystem of bacteria, or microbiota, colonizing our guts be going through when hit with infection? A study from Brigham and Women's Hospital (BWH) has utilized unique computational models to show how infection can affect bacteria that naturally live in our intestines. The findings may ultimately help clinicians to better treat and prevent gastrointestinal infection and inflammation through a better understanding of the major alterations that occur when foreign bacteria disrupt the gut ...
'Expressive therapy' intervention assists women living with HIV
2014-07-11
New research from UC San Francisco shows that an "expressive therapy" group intervention conducted by The Medea Project helps women living with HIV disclose their health status and improves their social support, self-efficacy and the safety and quality of their relationships.
"Medication alone is totally insufficient," said the study's first author, Edward L. Machtinger, MD, director of the Women's HIV Program at UCSF. "Over 90 percent of our patients are on effective antiretroviral therapy but far too many are dying from suicide, addiction, and violence. Depression, addiction, ...
Belize's lobster, conch, and fish populations rebuild in no-take zones
2014-07-11
A new report from the Wildlife Conservation Society shows that no-take zones in Belize can not only help economically valuable species such as lobster, conch, and fish recover from overfishing, but may also help re-colonize nearby reef areas.
The report—titled "Review of the Benefits of No-Take Zones"—represents a systematic review of research literature from no-take areas around the world. The report was written by Dr. Craig Dahlgren, a recognized expert in marine protected areas and fisheries management. The report comes as signatory countries of the Convention on Biological ...